-
Notifications
You must be signed in to change notification settings - Fork 254
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
* Added simple Ollama example * Added example to docs and updated cards * Removed extra logo * re order * Cleared all outputs and resolved comments * Added ollama's own example file * Added generated example using tool * Point examples to generated file --------- Co-authored-by: Akhil Anand <[email protected]> Co-authored-by: reibs <[email protected]> Co-authored-by: Pratyush Shukla <[email protected]>
- Loading branch information
1 parent
882f371
commit 135cf8a
Showing
6 changed files
with
489 additions
and
0 deletions.
There are no files selected for viewing
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,123 @@ | ||
--- | ||
title: 'Ollama Example' | ||
description: 'Using Ollama with AgentOps' | ||
mode: "wide" | ||
--- | ||
|
||
{/* SOURCE_FILE: examples/ollama_examples/ollama_examples.ipynb */}# AgentOps Ollama Integration | ||
|
||
This example demonstrates how to use AgentOps to monitor your Ollama LLM calls. | ||
|
||
First let's install the required packages | ||
|
||
> ⚠️ **Important**: Make sure you have Ollama installed and running locally before running this notebook. You can install it from [ollama.ai](https://ollama.com). | ||
|
||
```python | ||
%pip install -U ollama | ||
%pip install -U agentops | ||
%pip install -U python-dotenv | ||
``` | ||
|
||
Then import them | ||
|
||
|
||
```python | ||
import ollama | ||
import agentops | ||
import os | ||
from dotenv import load_dotenv | ||
|
||
``` | ||
|
||
Next, we'll set our API keys. For Ollama, we'll need to make sure Ollama is running locally. | ||
[Get an AgentOps API key](https://agentops.ai/settings/projects) | ||
|
||
1. Create an environment variable in a .env file or other method. By default, the AgentOps `init()` function will look for an environment variable named `AGENTOPS_API_KEY`. Or... | ||
2. Replace `<your_agentops_key>` below and pass in the optional `api_key` parameter to the AgentOps `init(api_key=...)` function. Remember not to commit your API key to a public repo! | ||
|
||
|
||
```python | ||
# Let's load our environment variables | ||
load_dotenv() | ||
|
||
AGENTOPS_API_KEY = os.getenv("AGENTOPS_API_KEY") or "<your_agentops_key>" | ||
``` | ||
|
||
|
||
```python | ||
# Initialize AgentOps with some default tags | ||
agentops.init(AGENTOPS_API_KEY, default_tags=["ollama-example"]) | ||
``` | ||
|
||
Now let's make some basic calls to Ollama. Make sure you have pulled the model first, use the following or replace with whichever model you want to use. | ||
|
||
|
||
```python | ||
ollama.pull("mistral") | ||
``` | ||
|
||
|
||
```python | ||
# Basic completion, | ||
response = ollama.chat(model='mistral', | ||
messages=[{ | ||
'role': 'user', | ||
'content': 'What are the benefits of using AgentOps for monitoring LLMs?', | ||
}] | ||
) | ||
print(response['message']['content']) | ||
``` | ||
|
||
Let's try streaming responses as well | ||
|
||
|
||
```python | ||
# Streaming Example | ||
stream = ollama.chat( | ||
model='mistral', | ||
messages=[{ | ||
'role': 'user', | ||
'content': 'Write a haiku about monitoring AI agents', | ||
}], | ||
stream=True | ||
) | ||
|
||
for chunk in stream: | ||
print(chunk['message']['content'], end='') | ||
|
||
``` | ||
|
||
|
||
```python | ||
# Conversation Example | ||
messages = [ | ||
{ | ||
'role': 'user', | ||
'content': 'What is AgentOps?' | ||
}, | ||
{ | ||
'role': 'assistant', | ||
'content': 'AgentOps is a monitoring and observability platform for LLM applications.' | ||
}, | ||
{ | ||
'role': 'user', | ||
'content': 'Can you give me 3 key features?' | ||
} | ||
] | ||
|
||
response = ollama.chat( | ||
model='mistral', | ||
messages=messages | ||
) | ||
print(response['message']['content']) | ||
``` | ||
|
||
> 💡 **Note**: In production environments, you should add proper error handling around the Ollama calls and use `agentops.end_session("Error")` when exceptions occur. | ||
Finally, let's end our AgentOps session | ||
|
||
|
||
```python | ||
agentops.end_session("Success") | ||
``` |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,150 @@ | ||
--- | ||
title: Ollama | ||
description: "AgentOps provides first class support for Ollama" | ||
--- | ||
|
||
import CodeTooltip from '/snippets/add-code-tooltip.mdx' | ||
import EnvTooltip from '/snippets/add-env-tooltip.mdx' | ||
|
||
<Note> | ||
This is a living integration. Should you need any added functionality, message us on [Discord](https://discord.gg/UgJyyxx7uc)! | ||
</Note> | ||
|
||
<Card title="Ollama" icon={<img src="/images/external/ollama/ollama-icon.png" alt="Ollama" />} iconType="image" href="https://ollama.com"> | ||
First class support for Ollama | ||
</Card> | ||
|
||
<Steps> | ||
<Step title="Install the AgentOps SDK"> | ||
<CodeGroup> | ||
```bash pip | ||
pip install agentops ollama | ||
``` | ||
```bash poetry | ||
poetry add agentops ollama | ||
``` | ||
</CodeGroup> | ||
</Step> | ||
<Step title="Add 3 lines of code"> | ||
<CodeTooltip/> | ||
<CodeGroup> | ||
```python python | ||
import agentops | ||
import ollama | ||
|
||
agentops.init(<INSERT YOUR API KEY HERE>) | ||
agentops.start_session() | ||
|
||
ollama.pull("<MODEL NAME>") | ||
|
||
response = ollama.chat(model='mistral', | ||
messages=[{ | ||
'role': 'user', | ||
'content': 'What are the benefits of using AgentOps for monitoring LLMs?', | ||
}] | ||
) | ||
print(response['message']['content']) | ||
... | ||
# End of program (e.g. main.py) | ||
agentops.end_session("Success") # Success|Fail|Indeterminate | ||
``` | ||
</CodeGroup> | ||
<EnvTooltip /> | ||
<CodeGroup> | ||
```python .env | ||
# Alternatively, you can set the API key as an environment variable | ||
AGENTOPS_API_KEY=<YOUR API KEY> | ||
``` | ||
</CodeGroup> | ||
Read more about environment variables in [Advanced Configuration](/v1/usage/advanced-configuration) | ||
</Step> | ||
<Step title="Run your Agent"> | ||
Execute your program and visit [app.agentops.ai/drilldown](https://app.agentops.ai/drilldown) to observe your Agent! 🕵️ | ||
<Tip> | ||
After your run, AgentOps prints a clickable url to console linking directly to your session in the Dashboard | ||
</Tip> | ||
<div/> | ||
</Step> | ||
</Steps> | ||
|
||
## Full Examples | ||
|
||
<CodeGroup> | ||
```python basic completion | ||
import ollama | ||
import agentops | ||
|
||
agentops.init(<INSERT YOUR API KEY HERE>) | ||
|
||
ollama.pull("<MODEL NAME>") | ||
response = ollama.chat( | ||
model="<MODEL NAME>", | ||
max_tokens=1024, | ||
messages=[{ | ||
"role": "user", | ||
"content": "Write a haiku about AI and humans working together" | ||
}] | ||
) | ||
|
||
print(response['message']['content']) | ||
agentops.end_session('Success') | ||
``` | ||
|
||
```python streaming | ||
import agentops | ||
import ollama | ||
|
||
async def main(): | ||
agentops.init(<INSERT YOUR API KEY HERE>) | ||
ollama.pull("<MODEL NAME>") | ||
|
||
stream = ollama.chat( | ||
model="<MODEL NAME>", | ||
messages=[{ | ||
'role': 'user', | ||
'content': 'Write a haiku about monitoring AI agents', | ||
}], | ||
stream=True | ||
) | ||
|
||
for chunk in stream: | ||
print(chunk['message']['content'], end='') | ||
|
||
agentops.end_session('Success') | ||
``` | ||
|
||
```python conversation | ||
import ollama | ||
import agentops | ||
|
||
agentops.init(<INSERT YOUR API KEY HERE>) | ||
ollama.pull("<MODEL NAME>") | ||
|
||
messages = [ | ||
{ | ||
'role': 'user', | ||
'content': 'What is AgentOps?' | ||
}, | ||
{ | ||
'role': 'assistant', | ||
'content': 'AgentOps is a monitoring and observability platform for LLM applications.' | ||
}, | ||
{ | ||
'role': 'user', | ||
'content': 'Can you give me 3 key features?' | ||
} | ||
] | ||
|
||
response = ollama.chat( | ||
model="<MODEL NAME>", | ||
messages=messages | ||
) | ||
print(response['message']['content']) | ||
agentops.end_session('Success') | ||
``` | ||
</CodeGroup> | ||
|
||
<script type="module" src="/scripts/github_stars.js"></script> | ||
<script type="module" src="/scripts/scroll-img-fadein-animation.js"></script> | ||
<script type="module" src="/scripts/button_heartbeat_animation.js"></script> | ||
<script type="css" src="/styles/styles.css"></script> |
Oops, something went wrong.