Skip to content

Genentech/Islander

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

8 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Islander

This repository is the official implementation of the paper Metric Mirages in Cell Embeddings.

Please contact [email protected] or [email protected] if you have any questions.

teaser

Citation

@article {Islander,
	author = {Hanchen Wang and Jure Leskovec and Aviv Regev},
	title = {Metric Mirages in Cell Embeddings},
	doi = {10.1101/2024.04.02.587824},
	publisher = {Cold Spring Harbor Laboratory},
	URL = {https://www.biorxiv.org/content/early/2024/04/02/2024.04.02.587824}
	journal = {bioRxiv},
	year = {2024},
}

Usage

We include scripts to reproduce the results in the scripts folder. You can also follow the step-by-step instructions below:

Step 0: Set up the environment.

conda env create -f env.yml

Step 1: Data preprocessing. First, data can be downloaded from:

Brain Breast COVID Eye FetalGut FetalLung Heart Lung Pancreas Skin
Paper Paper Paper Paper Paper Paper Paper Paper Paper Paper
Data Data Data Data Data Data Data Data Data Data

We then applied quality control to each dataset. Specifically, we filtered out cell profiles with fewer than 1,000 reads or fewer than 500 detected genes. Genes present in fewer than five cells were also excluded. Normalization was performed using Scanpy, scaling each cell's read counts to a total of 10,000 and subsequently applying a log1p transformation:

# download via "wget -O data/breast/local.h5ad https://datasets.cellxgene.cziscience.com/b8b5be07-061b-4390-af0a-f9ced877a068.h5ad"
adata = sc.read_h5ad(dh.DATA_RAW_["breast"])
adata.X = adata.raw.X
adata.layers["raw_counts"] = adata.raw.X
del adata.raw
uh.preprocess(adata)

[Output]
filtered out 9954 cells that have less than 1000 counts
filtered out 865 cells that have less than 500 genes expressed
filtered out 3803 genes that are detected in less than 5 cells
=============================================================================
29431 genes x 703512 cells after quality control.
=============================================================================
normalizing by total count per cell
    finished (0:00:06): normalized adata.X and added    'n_counts', counts per cell before normalization (adata.obs)

The top 1000 highly variable genes are selected through:

sc.pp.highly_variable_genes(adata, subset=True, flavor="seurat_v3", n_top_genes=1000)

Then metadata is saved as JSON files. See the minimal example: jupyter_nb/Process_Breast.ipynb.

Step 2: Run Islander and benchmark with scIB

cd ${HOME}/Islander/src

export LR=0.001
export EPOCH=10
export MODE="mixup"
export LEAKAGE=16
export MLPSIZE="128 128"
export DATASET_List=("lung" "lung_fetal_donor" "lung_fetal_organoid" \
    "brain" "breast" "heart" "eye" "gut_fetal" "skin" "COVID" "pancreas")

for DATASET in "${DATASET_List[@]}"; do
export PROJECT="_${DATASET}_"
export SavePrefix="${HOME}/Islander/models/${PROJECT}"
export RUNNAME="MODE-${MODE}-ONLY_LEAK-${LEAKAGE}_MLP-${MLPSIZE}"
echo "DATASET-${DATASET}_${RUNNAME}"
mkdir -p $SavePrefix

# === Training ===
python scTrain.py \
    --gpu 3 \
    --lr ${LR} \
    --mode ${MODE} \
    --epoch ${EPOCH} \
    --dataset ${DATASET} \
    --leakage ${LEAKAGE} \
    --project ${PROJECT} \
    --mlp_size ${MLPSIZE} \
    --runname "${RUNNAME}" \
    --savename "${SavePrefix}/${RUNNAME}";

# === Benchmarking ===
python scBenchmarker.py \
    --islander \
    --saveadata \
    --dataset "${DATASET}" \
    --save_path "${SavePrefix}/${RUNNAME}";
done

We have also provided variants of Islander, which make use of different forms of semi-supervised learning loss (triplet and supervised contrastive loss). See scripts/_Islander_SCL.sh and scripts/_Islander_Triplet.sh for details.

Step 3: Run integration methods and benchmark with scIB

export DATASET_List="lung_fetal_donor"
echo -e "\n\n"

echo "DATASET-${DATASET}_HVG"
export CUDA_VISIBLE_DEVICES=2 & python scBenchmarker.py \
    --all \
    --highvar \
    --saveadata \
    --dataset "${DATASET}" \
    --savecsv "${DATASET}_FULL" \
    --save_path "${HOME}/Islander_dev/models/_${DATASET}_/MODE-mixup-ONLY_LEAK-16_MLP-128 128";
   
# === highly variable genes ===
echo "DATASET-${DATASET}_HVG"
export CUDA_VISIBLE_DEVICES=2 & python scBenchmarker.py \
	--all \
	--highvar \
	--saveadata \
	--dataset "${DATASET}" \
	--savecsv "${DATASET}_HVG" \
	--save_path "${HOME}/Islander_dev/models/_${DATASET}_/MODE-mixup-ONLY_LEAK-16_MLP-128 128";

Step 4: Run and benchmark foundation models with scIB

Please refer to the authors' original tutorials (scGPT, Geneformer, scFoundation, UCE) for extracting zero-shot and fine-tuned cell embeddings. We provide a minimal example notebook jupyter_nb/Geneformer_Skin.ipynb to extract zero-shot cell embeddings for the skin dataset using pre-trained Geneformer. To evaluate such embedding with scIB:

cd ${HOME}/Islander/src

export DATASET="brain"
echo -e "\n\n"
echo "DATASET-${DATASET}_Geneformer"
python scBenchmarker.py \
    --obsm_keys Geneformer \
    --dataset "${DATASET}" \
    --savecsv "${DATASET}_Geneformer" \
    --save_path "${HOME}/Islander/models/_${skin}_/MODE-mixup-ONLY_LEAK-16_MLP-128 128";

Step 5: Benchmark with scGraph

cd ${HOME}/Islander_dev/src

export DATASET_List=("skin" "lung" "lung_fetal_donor" "lung_fetal_organoid" \
    "brain" "breast" "heart" "eye" "gut_fetal" "skin" "COVID" "pancreas")

for DATASET in "${DATASET_List[@]}"; do
    echo "_${DATASET}_"
    python scGraph.py ${DATASET} ;
done

The output files of scGraph have the following format:

Rank-Count Corr-Count Rank-PCA Corr-PCA Corr-Weights
Geneformer 0.792 0.863 0.610 0.799 0.498
Harmony 0.738 0.963 0.670 0.924 0.678
Harmony_hvg 0.648 0.934 0.709 0.941 0.724
Islander 0.398 0.941 0.292 0.847 0.160

We report the scores of Rank-PCA and Corr-Weights in the paper.

We'll integrate scGraph and many more other metrics into the next version of scIB, please stay tuned!


Step x: Case study scGraph vs scIB on fibroblast cells from the human fetal lung

The fibroblast subset is selected through:

adata = sc.read_h5ad(dh.DATA_EMB_["lung_fetal_donor"])
_subset = adata[["fibro" in _ct for _ct in adata.obs["new_celltype"]]]

# Then repeat steps 2-4 above.

Have fun exploring!!

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published