-
Notifications
You must be signed in to change notification settings - Fork 3
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #19 from simonbyrne/sb/lcc
add HRRR CONUS grid
- Loading branch information
Showing
4 changed files
with
275 additions
and
5 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,190 @@ | ||
# SPDX-FileCopyrightText: Copyright (c) 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. | ||
# SPDX-License-Identifier: Apache-2.0 | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
import numpy as np | ||
import torch | ||
|
||
from earth2grid import base | ||
from earth2grid._regrid import BilinearInterpolator | ||
|
||
try: | ||
import pyvista as pv | ||
except ImportError: | ||
pv = None | ||
|
||
__all__ = [ | ||
"LambertConformalConicProjection", | ||
"LambertConformalConicGrid", | ||
"HRRR_CONUS_PROJECTION", | ||
"HRRR_CONUS_GRID", | ||
] | ||
|
||
|
||
class LambertConformalConicProjection: | ||
def __init__(self, lat0: float, lon0: float, lat1: float, lat2: float, radius: float): | ||
""" | ||
Args: | ||
lat0: latitude of origin (degrees) | ||
lon0: longitude of origin (degrees) | ||
lat1: first standard parallel (degrees) | ||
lat2: second standard parallel (degrees) | ||
radius: radius of sphere (m) | ||
""" | ||
|
||
self.lon0 = lon0 | ||
self.lat0 = lat0 | ||
self.lat1 = lat1 | ||
self.lat2 = lat2 | ||
self.radius = radius | ||
|
||
c1 = np.cos(np.deg2rad(lat1)) | ||
c2 = np.cos(np.deg2rad(lat2)) | ||
t1 = np.tan(np.pi / 4 + np.deg2rad(lat1) / 2) | ||
t2 = np.tan(np.pi / 4 + np.deg2rad(lat2) / 2) | ||
|
||
if np.abs(lat1 - lat2) < 1e-8: | ||
self.n = np.sin(np.deg2rad(lat1)) | ||
else: | ||
self.n = np.log(c1 / c2) / np.log(t2 / t1) | ||
|
||
self.RF = radius * c1 * np.power(t1, self.n) / self.n | ||
self.rho0 = self._rho(lat0) | ||
|
||
def _rho(self, lat): | ||
return self.RF / np.power(np.tan(np.pi / 4 + np.deg2rad(lat) / 2), self.n) | ||
|
||
def _theta(self, lon): | ||
""" | ||
Angle of deviation (in radians) of the projected grid from the regular grid, | ||
for a given longitude (in degrees). | ||
To convert to U and V on the projected grid to easterly / northerly components: | ||
UN = cos(theta) * U + sin(theta) * V | ||
VN = - sin(theta) * U + cos(theta) * V | ||
""" | ||
# center about reference longitude | ||
delta_lon = lon - self.lon0 | ||
delta_lon = delta_lon - np.round(delta_lon / 360) * 360 # convert to [-180, 180] | ||
return self.n * np.deg2rad(delta_lon) | ||
|
||
def project(self, lat, lon): | ||
""" | ||
Compute the projected x,y from lat,lon. | ||
""" | ||
rho = self._rho(lat) | ||
theta = self._theta(lon) | ||
|
||
x = rho * np.sin(theta) | ||
y = self.rho0 - rho * np.cos(theta) | ||
return x, y | ||
|
||
def inverse_project(self, x, y): | ||
""" | ||
Compute the lat,lon from the projected x,y. | ||
""" | ||
rho = np.hypot(x, self.rho0 - y) | ||
theta = np.arctan2(x, self.rho0 - y) | ||
|
||
lat = np.rad2deg(2 * np.arctan(np.power(self.RF / rho, 1 / self.n))) - 90 | ||
lon = self.lon0 + np.rad2deg(theta / self.n) | ||
return lat, lon | ||
|
||
|
||
# Projection used by HRRR CONUS (Continental US) data | ||
# https://rapidrefresh.noaa.gov/hrrr/HRRR_conus.domain.txt | ||
HRRR_CONUS_PROJECTION = LambertConformalConicProjection(lon0=-97.5, lat0=38.5, lat1=38.5, lat2=38.5, radius=6371229.0) | ||
|
||
|
||
class LambertConformalConicGrid(base.Grid): | ||
# nothing here is specific to the projection, so could be shared by any projected rectilinear grid | ||
def __init__(self, projection: LambertConformalConicProjection, x, y): | ||
""" | ||
Args: | ||
projection: LambertConformalConicProjection object | ||
x: range of x values | ||
y: range of y values | ||
""" | ||
self.projection = projection | ||
|
||
self.x = np.array(x) | ||
self.y = np.array(y) | ||
|
||
@property | ||
def lat_lon(self): | ||
mesh_x, mesh_y = np.meshgrid(self.x, self.y) | ||
return self.projection.inverse_project(mesh_x, mesh_y) | ||
|
||
@property | ||
def lat(self): | ||
return self.lat_lon[0] | ||
|
||
@property | ||
def lon(self): | ||
return self.lat_lon[1] | ||
|
||
@property | ||
def shape(self): | ||
return (len(self.y), len(self.x)) | ||
|
||
def __getitem__(self, idxs): | ||
yidxs, xidxs = idxs | ||
return LambertConformalConicGrid(self.projection, x=self.x[xidxs], y=self.y[yidxs]) | ||
|
||
def get_bilinear_regridder_to(self, lat: np.ndarray, lon: np.ndarray): | ||
"""Get regridder to the specified lat and lon points""" | ||
|
||
x, y = self.projection.project(lat, lon) | ||
|
||
return BilinearInterpolator( | ||
x_coords=torch.from_numpy(self.x), | ||
y_coords=torch.from_numpy(self.y), | ||
x_query=torch.from_numpy(x), | ||
y_query=torch.from_numpy(y), | ||
) | ||
|
||
def visualize(self, data): | ||
raise NotImplementedError() | ||
|
||
def to_pyvista(self): | ||
if pv is None: | ||
raise ImportError("Need to install pyvista") | ||
|
||
lat, lon = self.lat_lon | ||
y = np.cos(np.deg2rad(lat)) * np.sin(np.deg2rad(lon)) | ||
x = np.cos(np.deg2rad(lat)) * np.cos(np.deg2rad(lon)) | ||
z = np.sin(np.deg2rad(lat)) | ||
grid = pv.StructuredGrid(x, y, z) | ||
return grid | ||
|
||
|
||
def hrrr_conus_grid(ix0=0, iy0=0, nx=1799, ny=1059): | ||
# coordinates of point in top-left corner | ||
lat0 = 21.138123 | ||
lon0 = 237.280472 | ||
# grid length (m) | ||
scale = 3000.0 | ||
# coordinates on projected space | ||
x0, y0 = HRRR_CONUS_PROJECTION.project(lat0, lon0) | ||
|
||
x = [x0 + i * scale for i in range(ix0, ix0 + nx)] | ||
y = [y0 + i * scale for i in range(iy0, iy0 + ny)] | ||
|
||
return LambertConformalConicGrid(HRRR_CONUS_PROJECTION, x, y) | ||
|
||
|
||
# Grid used by HRRR CONUS (Continental US) data | ||
HRRR_CONUS_GRID = hrrr_conus_grid() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,77 @@ | ||
# SPDX-FileCopyrightText: Copyright (c) 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. | ||
# SPDX-License-Identifier: Apache-2.0 | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
# %% | ||
import numpy as np | ||
import pytest | ||
import torch | ||
|
||
from earth2grid.lcc import HRRR_CONUS_GRID | ||
|
||
|
||
def test_grid_shape(): | ||
assert HRRR_CONUS_GRID.lat.shape == HRRR_CONUS_GRID.shape | ||
assert HRRR_CONUS_GRID.lon.shape == HRRR_CONUS_GRID.shape | ||
|
||
|
||
lats = np.array( | ||
[ | ||
[21.138123, 21.801926, 22.393631, 22.911015], | ||
[23.636763, 24.328228, 24.944668, 25.48374], | ||
[26.155672, 26.875362, 27.517046, 28.078257], | ||
[28.69017, 29.438608, 30.106009, 30.68978], | ||
] | ||
) | ||
|
||
lons = np.array( | ||
[ | ||
[-122.71953, -120.03195, -117.304596, -114.54146], | ||
[-123.491356, -120.72898, -117.92319, -115.07828], | ||
[-124.310524, -121.469505, -118.58098, -115.649574], | ||
[-125.181404, -122.25762, -119.28173, -116.25871], | ||
] | ||
) | ||
|
||
|
||
def test_grid_vals(): | ||
assert HRRR_CONUS_GRID.lat[0:400:100, 0:400:100] == pytest.approx(lats) | ||
assert HRRR_CONUS_GRID.lon[0:400:100, 0:400:100] == pytest.approx(lons) | ||
|
||
|
||
def test_grid_slice(): | ||
slice_grid = HRRR_CONUS_GRID[0:400:100, 0:400:100] | ||
assert slice_grid.lat == pytest.approx(lats) | ||
assert slice_grid.lon == pytest.approx(lons) | ||
|
||
|
||
def test_regrid_1d(): | ||
src = HRRR_CONUS_GRID | ||
dest_lat = np.linspace(25.0, 33.0, 10) | ||
dest_lon = np.linspace(-123, -98, 10) | ||
regrid = src.get_bilinear_regridder_to(dest_lat, dest_lon) | ||
src_lat = torch.broadcast_to(torch.tensor(src.lat), src.shape) | ||
out_lat = regrid(src_lat) | ||
|
||
assert torch.allclose(out_lat, torch.tensor(dest_lat)) | ||
|
||
|
||
def test_regrid_2d(): | ||
src = HRRR_CONUS_GRID | ||
dest_lat, dest_lon = np.meshgrid(np.linspace(25.0, 33.0, 10), np.linspace(-123, -98, 12)) | ||
regrid = src.get_bilinear_regridder_to(dest_lat, dest_lon) | ||
src_lat = torch.broadcast_to(torch.tensor(src.lat), src.shape) | ||
out_lat = regrid(src_lat) | ||
|
||
assert torch.allclose(out_lat, torch.tensor(dest_lat)) |