Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Rename UU-Fin to Type-With-Cardinality-ℕ #1316

Merged
4 changes: 2 additions & 2 deletions src/elementary-number-theory/falling-factorials.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -40,7 +40,7 @@ Fin-falling-factorial-ℕ :
(n m : ℕ) → Fin (falling-factorial-ℕ n m) ≃ (Fin m ↪ Fin n)
Fin-falling-factorial-ℕ zero-ℕ zero-ℕ =
equiv-is-contr
( is-contr-Fin-one-ℕ)
( is-contr-Fin-1)
( is-contr-equiv
( is-emb id)
( left-unit-law-Σ-is-contr
Expand All @@ -52,7 +52,7 @@ Fin-falling-factorial-ℕ zero-ℕ (succ-ℕ m) =
equiv-is-empty id (λ f → map-emb f (inr star))
Fin-falling-factorial-ℕ (succ-ℕ n) zero-ℕ =
equiv-is-contr
( is-contr-Fin-one-ℕ)
( is-contr-Fin-1)
( is-contr-equiv
( is-emb ex-falso)
( left-unit-law-Σ-is-contr
Expand Down
6 changes: 3 additions & 3 deletions src/finite-group-theory/abstract-quaternion-group.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -929,11 +929,11 @@ is-finite-Q8 = unit-trunc-Prop count-Q8
Q8-Finite-Type : Finite-Type lzero
Q8-Finite-Type = pair Q8 is-finite-Q8

has-cardinality-eight-Q8 : has-cardinality 8 Q8
has-cardinality-eight-Q8 : has-cardinality-ℕ 8 Q8
has-cardinality-eight-Q8 = unit-trunc-Prop equiv-count-Q8

Q8-UU-Fin-8 : UU-Fin lzero 8
Q8-UU-Fin-8 = pair Q8 has-cardinality-eight-Q8
Q8-Type-With-Cardinality-ℕ : Type-With-Cardinality-ℕ lzero 8
Q8-Type-With-Cardinality-ℕ = pair Q8 has-cardinality-eight-Q8

has-finite-cardinality-Q8 : has-finite-cardinality Q8
has-finite-cardinality-Q8 = pair 8 has-cardinality-eight-Q8
Expand Down
4 changes: 2 additions & 2 deletions src/finite-group-theory/alternating-concrete-groups.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -35,7 +35,7 @@ module _
alternating-Concrete-Group : Concrete-Group (lsuc (lsuc lzero))
alternating-Concrete-Group =
concrete-group-kernel-hom-Concrete-Group
( UU-Fin-Group lzero n)
( UU-Fin-Group (lsuc lzero) 2)
( Type-With-Cardinality-ℕ-Group lzero n)
( Type-With-Cardinality-ℕ-Group (lsuc lzero) 2)
( cartier-delooping-sign n)
```
4 changes: 2 additions & 2 deletions src/finite-group-theory/alternating-groups.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -30,11 +30,11 @@ The alternating group on a finite set `X` is the group of even permutations of

```agda
module _
{l} (n : ℕ) (X : UU-Fin l n)
{l} (n : ℕ) (X : Type-With-Cardinality-ℕ l n)
where
alternating-Group : Group l
alternating-Group = group-kernel-hom-Group
( symmetric-Group (set-UU-Fin n X))
( symmetric-Group (set-Type-With-Cardinality-ℕ n X))
( symmetric-Group (Fin-Set 2))
( sign-homomorphism n X)
```
Original file line number Diff line number Diff line change
Expand Up @@ -128,7 +128,10 @@ module _
(n +ℕ 2 , (compute-raise l (Fin (n +ℕ 2)))) (star))

cartier-delooping-sign :
(n : ℕ) → hom-Concrete-Group (UU-Fin-Group l n) (UU-Fin-Group (lsuc l) 2)
(n : ℕ) →
hom-Concrete-Group
( Type-With-Cardinality-ℕ-Group l n)
( Type-With-Cardinality-ℕ-Group (lsuc l) 2)
cartier-delooping-sign =
quotient-delooping-sign
( orientation-Complete-Undirected-Graph)
Expand All @@ -146,29 +149,29 @@ module _
( comp-hom-Group
( symmetric-Group (raise-Fin-Set l (n +ℕ 2)))
( loop-group-Set (raise-Fin-Set l (n +ℕ 2)))
( group-Concrete-Group (UU-Fin-Group (lsuc l) 2))
( Type-With-Cardinality-ℕ-Group' (lsuc l) 2)
( comp-hom-Group
( loop-group-Set (raise-Fin-Set l (n +ℕ 2)))
( group-Concrete-Group (UU-Fin-Group l (n +ℕ 2)))
( group-Concrete-Group (UU-Fin-Group (lsuc l) 2))
( Type-With-Cardinality-ℕ-Group' l (n +ℕ 2))
( Type-With-Cardinality-ℕ-Group' (lsuc l) 2)
( hom-group-hom-Concrete-Group
( UU-Fin-Group l (n +ℕ 2))
( UU-Fin-Group (lsuc l) 2)
( Type-With-Cardinality-ℕ-Group l (n +ℕ 2))
( Type-With-Cardinality-ℕ-Group (lsuc l) 2)
( cartier-delooping-sign (n +ℕ 2)))
( hom-inv-iso-Group
( group-Concrete-Group (UU-Fin-Group l (n +ℕ 2)))
( Type-With-Cardinality-ℕ-Group' l (n +ℕ 2))
( loop-group-Set (raise-Fin-Set l (n +ℕ 2)))
( iso-loop-group-fin-UU-Fin-Group l (n +ℕ 2))))
( iso-loop-group-fin-Type-With-Cardinality-ℕ-Group l (n +ℕ 2))))
( hom-inv-symmetric-group-loop-group-Set (raise-Fin-Set l (n +ℕ 2))))
( comp-hom-Group
( symmetric-Group (raise-Fin-Set l (n +ℕ 2)))
( symmetric-Group (Fin-Set (n +ℕ 2)))
( group-Concrete-Group (UU-Fin-Group (lsuc l) 2))
( Type-With-Cardinality-ℕ-Group' (lsuc l) 2)
( comp-hom-Group
( symmetric-Group (Fin-Set (n +ℕ 2)))
( symmetric-Group (Fin-Set 2))
( group-Concrete-Group (UU-Fin-Group (lsuc l) 2))
( symmetric-abstract-UU-fin-group-quotient-hom
( Type-With-Cardinality-ℕ-Group' (lsuc l) 2)
( symmetric-abstract-type-with-cardinality-ℕ-group-quotient-hom
( orientation-Complete-Undirected-Graph)
( even-difference-orientation-Complete-Undirected-Graph)
( λ n _ →
Expand Down
14 changes: 7 additions & 7 deletions src/finite-group-theory/concrete-quaternion-group.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -37,10 +37,10 @@ equiv-face-cube :
( map-axis-equiv-cube (succ-ℕ k) X Y e d a))
equiv-face-cube k X Y e d a =
pair
( equiv-complement-element-UU-Fin k
( pair (dim-cube-UU-Fin (succ-ℕ k) X) d)
( equiv-complement-element-Type-With-Cardinality-ℕ k
( pair (dim-cube-Type-With-Cardinality-ℕ (succ-ℕ k) X) d)
( pair
( dim-cube-UU-Fin (succ-ℕ k) Y)
( dim-cube-Type-With-Cardinality-ℕ (succ-ℕ k) Y)
( map-dim-equiv-cube (succ-ℕ k) X Y e d))
( dim-equiv-cube (succ-ℕ k) X Y e)
( refl))
Expand All @@ -52,24 +52,24 @@ equiv-face-cube k X Y e d a =
( dim-equiv-cube (succ-ℕ k) X Y e)
( pair d
( λ z →
has-decidable-equality-has-cardinality
has-decidable-equality-has-cardinality-ℕ
( succ-ℕ k)
( has-cardinality-dim-cube (succ-ℕ k) X)
( d)
( z)))
( pair
( map-dim-equiv-cube (succ-ℕ k) X Y e d)
( λ z →
has-decidable-equality-has-cardinality
has-decidable-equality-has-cardinality-ℕ
( succ-ℕ k)
( has-cardinality-dim-cube (succ-ℕ k) Y)
( map-dim-equiv-cube (succ-ℕ k) X Y e d)
( z)))
( refl)
( d')))) ∘e
( axis-equiv-cube (succ-ℕ k) X Y e
( inclusion-complement-element-UU-Fin k
( pair (dim-cube-UU-Fin (succ-ℕ k) X) d) d')))
( inclusion-complement-element-Type-With-Cardinality-ℕ k
( pair (dim-cube-Type-With-Cardinality-ℕ (succ-ℕ k) X) d) d')))

cube-with-labeled-faces :
(k : ℕ) → UU (lsuc lzero)
Expand Down
Loading
Loading