Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

OpenCLIP models #35

Merged
merged 6 commits into from
Feb 28, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
14 changes: 1 addition & 13 deletions clip_eval/common/base.py
Original file line number Diff line number Diff line change
@@ -1,7 +1,6 @@
from pathlib import Path

import numpy as np
import torch
from pydantic import BaseModel, model_validator
from torch.utils.data import DataLoader

Expand Down Expand Up @@ -78,19 +77,8 @@ def from_embedding_definition(model_name: str, dataset_name: str) -> "Embeddings

@staticmethod
def build_embedding(model: CLIPModel, dataset: Dataset, batch_size: int = 50) -> "Embeddings":
def _collate_fn(examples) -> dict[str, torch.Tensor]:
images = []
labels = []
for example in examples:
images.append(example["image"])
labels.append(example["label"])

pixel_values = torch.stack(images)
labels = torch.tensor(labels)
return {"pixel_values": pixel_values, "labels": labels}

dataset.set_transform(model.get_transform())
dataloader = DataLoader(dataset, collate_fn=_collate_fn, batch_size=batch_size)
dataloader = DataLoader(dataset, collate_fn=model.get_collate_fn(), batch_size=batch_size)

image_embeddings, labels = model.build_embedding(dataloader)
embeddings = Embeddings(images=image_embeddings, labels=labels)
Expand Down
109 changes: 85 additions & 24 deletions clip_eval/models/CLIP_model.py
Original file line number Diff line number Diff line change
Expand Up @@ -3,6 +3,7 @@
from typing import Any

import numpy as np
import open_clip
import torch
from torch.utils.data import DataLoader
from tqdm import tqdm
Expand All @@ -27,6 +28,7 @@ def __init__(
device = device or ("cuda" if torch.cuda.is_available() else "cpu")
self._check_device(device)
self.__device = torch.device(device)
self._setup(**kwargs)

@property
def title(self) -> str:
Expand All @@ -41,15 +43,19 @@ def device(self) -> torch.device:
return self.__device

@abstractmethod
def _setup(self, **kwargs):
def _setup(self, **kwargs) -> None:
pass

@abstractmethod
def build_embedding(self, dataloader: DataLoader) -> tuple[EmbeddingArray, ClassArray]:
def get_transform(self) -> Callable[[dict[str, Any]], dict[str, list[Any]]]:
...

@abstractmethod
def get_collate_fn(self) -> Callable[[Any], Any]:
...

@abstractmethod
def get_transform(self) -> Callable[[Any], Any]:
def build_embedding(self, dataloader: DataLoader) -> tuple[EmbeddingArray, ClassArray]:
...

@staticmethod
Expand All @@ -64,9 +70,8 @@ def _check_device(device: str):
class closed_CLIPModel(CLIPModel):
def __init__(self, title: str, title_in_source: str, device: str | None = None) -> None:
super().__init__(title, title_in_source, device)
self._setup()

def define_process_fn(self) -> Callable[[dict[str, Any]], dict[str, list[Any]]]:
def get_transform(self) -> Callable[[dict[str, Any]], dict[str, list[Any]]]:
def process_fn(batch) -> dict[str, list[Any]]:
images = [i.convert("RGB") for i in batch["image"]]
batch["image"] = [
Expand All @@ -76,11 +81,24 @@ def process_fn(batch) -> dict[str, list[Any]]:

return process_fn

def _setup(self):
def get_collate_fn(self) -> Callable[[Any], Any]:
def collate_fn(examples) -> dict[str, torch.Tensor]:
images = []
labels = []
for example in examples:
images.append(example["image"])
labels.append(example["label"])

pixel_values = torch.stack(images)
labels = torch.tensor(labels)
return {"pixel_values": pixel_values, "labels": labels}

return collate_fn

def _setup(self, **kwargs) -> None:
self.model = HF_ClipModel.from_pretrained(self.title_in_source).to(self.device) # type: ignore
load_result = HF_ClipProcessor.from_pretrained(self.title_in_source)
self.processor = load_result[0] if isinstance(load_result, tuple) else load_result
self.process_fn = self.define_process_fn()

def build_embedding(self, dataloader: DataLoader) -> tuple[EmbeddingArray, ClassArray]:
tmp_embeddings = []
Expand All @@ -96,42 +114,74 @@ def build_embedding(self, dataloader: DataLoader) -> tuple[EmbeddingArray, Class
labels = class_array.numpy()
return image_embeddings, labels

def get_transform(self) -> Callable[[Any], Any]:
return self.process_fn


class open_CLIPModel(CLIPModel):
def __init__(
self,
title: str,
title_in_source: str | None = None,
model_name: str,
pretrained: str,
device: str | None = None,
**kwargs,
) -> None:
self.pretrained = pretrained
self.model_name = model_name
title_in_source = model_name + "_" + pretrained
super().__init__(title, title_in_source, device, **kwargs)
self._setup()

def _setup(self, **kwargs):
raise NotImplementedError("open Clip not implemented")
def get_transform(self) -> Callable[[dict[str, Any]], dict[str, list[Any]]]:
def process_fn(batch) -> dict[str, list[Any]]:
images = [i.convert("RGB") for i in batch["image"]]
batch["image"] = [self.processor(i).to(self.device).unsqueeze(0) for i in images]
return batch

def build_embedding(self, dataloader: DataLoader):
raise NotImplementedError("open Clip not implemented")
return process_fn

def get_collate_fn(self) -> Callable[[Any], Any]:
def collate_fn(examples) -> dict[str, torch.Tensor]:
images = []
labels = []
for example in examples:
images.append(example["image"])
labels.append(example["label"])

torch_images = torch.stack(images)
labels = torch.tensor(labels)
return {"image": torch_images, "labels": labels}

def get_transform(self) -> Callable[[Any], Any]:
raise NotImplementedError("open Clip not implemented")
return collate_fn

def _setup(self, **kwargs) -> None:
model, _, preprocess = open_clip.create_model_and_transforms(
model_name=self.model_name, pretrained=self.pretrained, **kwargs
)
self.model = model
self.processor = preprocess

def build_embedding(self, dataloader: DataLoader):
tmp_embeddings = []
tmp_labels = []
with torch.inference_mode():
for batch in tqdm(dataloader, desc=f"Embedding dataset with {self.title}"):
tmp_labels.append(batch["labels"])
features = torch.stack([self.model.encode_image(image) for image in batch["image"]])
emb = (features / features.norm(p=2, dim=-1, keepdim=True)).squeeze()
tmp_embeddings.append(emb.to("cpu"))
image_embeddings: EmbeddingArray = np.concatenate(tmp_embeddings, 0)
class_array = torch.concatenate(tmp_labels)
labels = class_array.numpy()
return image_embeddings, labels


class SiglipModel(CLIPModel):
def __init__(self, title: str, title_in_source: str | None = None, device: str | None = None, **kwargs) -> None:
super().__init__(title, title_in_source, device, **kwargs)
self._setup()

def _setup(self, **kwargs):
self.model = HF_SiglipModel.from_pretrained(self.title_in_source).to(self.device)
self.processor = HF_SiglipProcessor.from_pretrained(self.title_in_source)
self.process_fn = self.define_process_fn()

def define_process_fn(self) -> Callable[[dict[str, Any]], dict[str, list[Any]]]:
def get_transform(self) -> Callable[[dict[str, Any]], dict[str, list[Any]]]:
def process_fn(batch) -> dict[str, list[Any]]:
images = [i.convert("RGB") for i in batch["image"]]
batch["image"] = [
Expand All @@ -141,6 +191,20 @@ def process_fn(batch) -> dict[str, list[Any]]:

return process_fn

def get_collate_fn(self) -> Callable[[Any], Any]:
def collate_fn(examples) -> dict[str, torch.Tensor]:
images = []
labels = []
for example in examples:
images.append(example["image"])
labels.append(example["label"])

pixel_values = torch.stack(images)
labels = torch.tensor(labels)
return {"pixel_values": pixel_values, "labels": labels}

return collate_fn

def build_embedding(self, dataloader: DataLoader) -> tuple[EmbeddingArray, ClassArray]:
tmp_embeddings = []
tmp_labels = []
Expand All @@ -154,6 +218,3 @@ def build_embedding(self, dataloader: DataLoader) -> tuple[EmbeddingArray, Class
class_array = torch.concatenate(tmp_labels)
labels = class_array.numpy()
return image_embeddings, labels

def get_transform(self) -> Callable[[Any], Any]:
return self.process_fn
1 change: 1 addition & 0 deletions clip_eval/models/provider.py
Original file line number Diff line number Diff line change
Expand Up @@ -37,5 +37,6 @@ def list_model_names(self) -> list[str]:
model_provider.register_model("street", closed_CLIPModel, title_in_source="geolocal/StreetCLIP")
model_provider.register_model("apple", open_CLIPModel, title_in_source="apple/DFN5B-CLIP-ViT-H-14")
model_provider.register_model("eva-clip", open_CLIPModel, title_in_source="BAAI/EVA-CLIP-8B-448")
model_provider.register_model("vit-b-32-laion2b", open_CLIPModel, model_name="ViT-B-32", pretrained="laion2b_e16")
model_provider.register_model("siglip_small", SiglipModel, title_in_source="google/siglip-base-patch16-224")
model_provider.register_model("siglip_large", SiglipModel, title_in_source="google/siglip-large-patch16-256")
59 changes: 58 additions & 1 deletion poetry.lock

Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.

1 change: 1 addition & 0 deletions pyproject.toml
Original file line number Diff line number Diff line change
Expand Up @@ -30,6 +30,7 @@ inquirerpy = "^0.3.4"
tabulate = "^0.9.0"
sentencepiece = "^0.2.0"
protobuf = "^4.25.3"
open-clip-torch = "^2.24.0"

[tool.poetry.group.dev.dependencies]
mypy = "^1.8.0"
Expand Down
Loading