Skip to content

event-driven-robotics/GraphEnet-NeVi-ICCV2025

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

6 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

GraphEnet: Event-driven Human Pose Estimation with a Graph Neural Network

Gaurvi Goyal1    Pham Cong Thuong1    Arren Glover1    Masayoshi Mizuno2    Chiara Bartolozzi1

1Istituto Italiano di Tecnologia    2Sony Interactive Entertainment Inc.   

arXiv    Dataset

This repository is the official implementation of the paper "GraphEnet: Event-driven Human Pose Estimation with a Graph Neural Network", which was presented at the 2nd Workshop on Neuromorphic Vision: Advantages and Applications of Event Cameras (NeVi2025), International Conference on Computer Vision (ICCV).

To use this setup,

  1. copy the data into <<dataDirectory>>/raw.
  2. Open main.py and change the data_path variable to <<dataDirectory>>.
  3. Run main.py

Installation

To install PyG, follow the instructionfrom here.

For the setup, please install the following libraries:

torch pytorch-lightning torch_geometric matplotlib opencv_python hpe_core albumentations torchvision tensorboard torch-cluster

Dataset

  • Please download the eH3.6M and and DHP19 dataset link and organise the downloaded files as follows:
/data
├── datasets
│   ├── eH36M
│   │   ├── EV2       # Contains Ground Truth data
│   │   ├── ledge 
│   │   │   ├── raw   # Contains validation data
│   ├── dhp19
│   │   ├── EV2       # Contains Ground Truth data
│   │   ├── ledge 
│   │   │   ├── raw   # Contains validation data

Training

  • To train the GraphEnet model on eh3.6m and dhp19, run the following command:
python3 main.py --node_loss_weight 0.001 --epoch 50 --data_path /data/datasets/dhp19/ledge/ --exp two_weights --dataset dhp19

Evaluation

  • To evaluate a single checkpoint, run the following command with --ckpt to specify the checkpoint to be evaluated:
python3 predict.py --data_path /data/datasets/xxxx/ledge/ --ckpt_path path/to/checkpoints/model

Two models are available, one per dataset, in the ckpts folder of the repository.

python3 predict.py --data_path /data/datasets/dhp19/ledge/ --ckpt_path ckpts/single_weight_dhp19.ckpts --arch single_weight --dataset dhp19 --visualise pose

About

Event-driven Human Pose Estimation with a Graph Neural Network

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages