Skip to content
Open
Changes from 4 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
130 changes: 130 additions & 0 deletions FormalConjectures/Wikipedia/NavierStokes.lean
Original file line number Diff line number Diff line change
@@ -0,0 +1,130 @@
/-
Copyright 2026 The Formal Conjectures Authors.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

https://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
-/

import FormalConjectures.Util.ProblemImports

/-!
# Existence And Smoothness Of The Navier–Stokes Equation

*Reference:*
[Wikipedia](https://en.wikipedia.org/wiki/Navier%E2%80%93Stokes_existence_and_smoothness)
[Clay Mathematics Institute](https://www.claymath.org/wp-content/uploads/2022/06/navierstokes.pdf)
-/

open ContDiff Set InnerProductSpace MeasureTheory

local macro "ℝ³" : term => `(EuclideanSpace ℝ (Fin 3))

noncomputable
def div (v : ℝ³ → ℝ³) (x : ℝ³) : ℝ := (fderiv ℝ v x).trace ℝ ℝ³

def IsPeriodic {α : Sort*} (f : ℝ³ → α) : Prop := ∀ x i, f (x + EuclideanSpace.single i 1) = f x

structure InitialVelocityCondition (v₀ : ℝ³ → ℝ³) : Prop where
div_free : ∀ x, div v₀ x = 0
smooth : ContDiff ℝ ∞ v₀

structure InitialVelocityConditionR3 (v₀ : ℝ³ → ℝ³) : Prop
extends InitialVelocityCondition v₀ where
-- (4)
decay : ∀ n : ℕ, ∀ K : ℝ, ∃ C : ℝ, ∀ x, ‖iteratedFDeriv ℝ n v₀ x‖ ≤ C / (1 + ‖x‖)^K

structure InitialVelocityConditionPeriodic (v₀ : ℝ³ → ℝ³) : Prop
extends InitialVelocityCondition v₀ where
-- (8)
periodic : IsPeriodic v₀

structure ForceCondition (f : ℝ³ → ℝ → ℝ³) : Prop where
smooth : ContDiffOn ℝ ∞ (↿f) (Set.univ ×ˢ Set.Ici 0)

structure ForceConditionR3 (f : ℝ³ → ℝ → ℝ³) : Prop
extends ForceCondition f where
-- (5)
decay : ∀ n : ℕ, ∀ K : ℝ, ∃ C : ℝ, ∀ x, ∀ t > 0,
‖iteratedFDeriv ℝ n (↿f) (x,t)‖ ≤ C / (1 + ‖x‖ + t)^K

structure ForceConditionPeriodic (f : ℝ³ → ℝ → ℝ³) : Prop
extends ForceCondition f where
-- (8)
periodic : ∀ t ≥ 0, IsPeriodic (f · t)
-- (9)
decay : ∀ n : ℕ, ∀ K : ℝ, ∃ C : ℝ, ∀ x, ∀ t > 0,
‖iteratedFDeriv ℝ n (↿f) (x,t)‖ ≤ C / (1 + t)^K


structure NavierStokesExistenceAndSmoothness
(nu : ℝ) (v₀ : ℝ³ → ℝ³) (f : ℝ³ → ℝ → ℝ³)
(v : ℝ³ → ℝ → ℝ³) (p : ℝ³ → ℝ → ℝ) : Prop where

-- (1)
navier_stokes : ∀ x, ∀ t > 0,
deriv (v x ·) t + fderiv ℝ (v · t) x (v x t) = nu • Δ (v · t) x - gradient (p · t) x + f x t

-- (2)
div_free : ∀ x, ∀ t ≥ 0, div (v · t) x = 0

-- (3)
initial_condition : ∀ x, v x 0 = v₀ x

-- (6) and (11)
velocity_smooth : ContDiffOn ℝ ∞ (↿v) (Set.univ ×ˢ Set.Ici 0)
pressure_smooth : ContDiffOn ℝ ∞ (↿p) (Set.univ ×ˢ Set.Ici 0)


structure NavierStokesExistenceAndSmoothnessR3
(nu : ℝ) (v₀ : ℝ³ → ℝ³) (f : ℝ³ → ℝ → ℝ³)
(v : ℝ³ → ℝ → ℝ³) (p : ℝ³ → ℝ → ℝ) : Prop
extends NavierStokesExistenceAndSmoothness nu v₀ f v p where

-- (7)
integrable : ∀ t ≥ 0, Integrable (‖v · t‖^2)
globally_bounded_energy : ∃ E, ∀ t ≥ 0, (∫ x : ℝ³, ‖v x t‖^2) < E

structure NavierStokesExistenceAndSmoothnessPeriodic
(nu : ℝ) (v₀ : ℝ³ → ℝ³) (f : ℝ³ → ℝ → ℝ³)
(v : ℝ³ → ℝ → ℝ³) (p : ℝ³ → ℝ → ℝ) : Prop
extends NavierStokesExistenceAndSmoothness nu v₀ f v p where

-- (10)
velocity_periodic : ∀ t ≥ 0, IsPeriodic (v · t)
pressure_periodic : ∀ t ≥ 0, IsPeriodic (p · t)


/-- (A) Existence and smoothness of Navier–Stokes solutions on ℝ³. -/
@[category research open, AMS 35]
theorem navier_stokes_existence_and_smoothness_R3 (nu : ℝ) (hnu : nu > 0)
(v₀ : ℝ³ → ℝ³) (hv₀ : InitialVelocityConditionR3 v₀) :
∃ v p, NavierStokesExistenceAndSmoothnessR3 nu v₀ (f:=0) v p := sorry

/-- (B) Existence and smoothness of Navier–Stokes solutions in ℝ³/ℤ³. -/
@[category research open, AMS 35]
theorem navier_stokes_existence_and_smoothness_periodic (nu : ℝ) (hnu : nu > 0)
(v₀ : ℝ³ → ℝ³) (hv₀ : InitialVelocityConditionPeriodic v₀) :
∃ v p, NavierStokesExistenceAndSmoothnessPeriodic nu v₀ (f:=0) v p := sorry

/-- (C) Breakdown of Navier–Stokes solutions on ℝ³.-/
@[category research open, AMS 35]
theorem navier_stokes_breakdown_R3 (nu : ℝ) (hnu : nu > 0) :
∃ (v₀ : ℝ³ → ℝ³) (f : ℝ³ → ℝ → ℝ³),
InitialVelocityConditionR3 v₀ ∧ ForceConditionR3 f ∧
¬(∃ v p, NavierStokesExistenceAndSmoothnessR3 nu v₀ f v p) := sorry

/-- (D) Breakdown of Navier–Stokes Solutions on ℝ³/ℤ³. -/
@[category research open, AMS 35]
theorem navier_stokes_breakdown_periodic (nu : ℝ) (hnu : nu > 0) :
∃ (v₀ : ℝ³ → ℝ³) (f : ℝ³ → ℝ → ℝ³),
InitialVelocityConditionPeriodic v₀ ∧ ForceConditionPeriodic f ∧
¬(∃ v p, NavierStokesExistenceAndSmoothnessPeriodic nu v₀ f v p) := sorry