Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

GRPO script #3

Merged
merged 13 commits into from
Jan 24, 2025
6 changes: 6 additions & 0 deletions scripts/training/README.md
Original file line number Diff line number Diff line change
@@ -1 +1,7 @@
# Scripts to Train and Evaluate Chat Models

## GRPO

```
accelerate launch script/training/grpo.py --model_name_or_path ...
```
100 changes: 100 additions & 0 deletions scripts/training/grpo.py
qgallouedec marked this conversation as resolved.
Show resolved Hide resolved
Original file line number Diff line number Diff line change
@@ -0,0 +1,100 @@
# Copyright 2025 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import argparse
from dataclasses import dataclass, field
from typing import Optional

from datasets import load_dataset
from transformers import AutoModelForCausalLM, AutoModelForSequenceClassification, AutoTokenizer

from trl import GRPOConfig, GRPOTrainer, ModelConfig, ScriptArguments, TrlParser, get_peft_config


@dataclass
class GRPOScriptArguments(ScriptArguments):
"""
Script arguments for the GRPO training script.

Args:
reward_model_name_or_path (`str` or `None`):
Reward model id of a pretrained model hosted inside a model repo on huggingface.co or local path to a
directory containing model weights saved using [`~transformers.PreTrainedModel.save_pretrained`].
"""

reward_funcs: list[str] = field(
default_factory=lambda: [],
metadata={
"help": "A list of reward functions to use for the GRPO training. "
"Each reward function should be a pretrained model id of a model hosted inside a model repo on huggingface.co or "
"local path to a directory containing model weights saved using `PreTrainedModel.save_pretrained`."
},
)
reward_model_name_or_path: Optional[str] = field(
default=None,
metadata={
"help": "Reward model id of a pretrained model hosted inside a model repo on huggingface.co or "
"local path to a directory containing model weights saved using `PreTrainedModel.save_pretrained`."
},
)


def main(script_args, training_args, model_args):
# Load a pretrained model
model = AutoModelForCausalLM.from_pretrained(
model_args.model_name_or_path, trust_remote_code=model_args.trust_remote_code
)
tokenizer = AutoTokenizer.from_pretrained(
model_args.model_name_or_path, trust_remote_code=model_args.trust_remote_code
)
reward_model = AutoModelForSequenceClassification.from_pretrained(
script_args.reward_model_name_or_path, trust_remote_code=model_args.trust_remote_code, num_labels=1
)

# Load the dataset
dataset = load_dataset(script_args.dataset_name, name=script_args.dataset_config)

# Initialize the GRPO trainer
trainer = GRPOTrainer(
model=model,
reward_funcs=reward_model,
args=training_args,
train_dataset=dataset[script_args.dataset_train_split],
eval_dataset=dataset[script_args.dataset_test_split] if training_args.eval_strategy != "no" else None,
processing_class=tokenizer,
peft_config=get_peft_config(model_args),
)

# Train and push the model to the Hub
trainer.train()

# Save and push to hub
trainer.save_model(training_args.output_dir)
if training_args.push_to_hub:
trainer.push_to_hub(dataset_name=script_args.dataset_name)


def make_parser(subparsers: argparse._SubParsersAction = None):
dataclass_types = (GRPOScriptArguments, GRPOConfig, ModelConfig)
if subparsers is not None:
parser = subparsers.add_parser("grpo", help="Run the GRPO training script", dataclass_types=dataclass_types)
else:
parser = TrlParser(dataclass_types)
return parser


if __name__ == "__main__":
parser = make_parser()
script_args, training_args, model_args = parser.parse_args_and_config()
main(script_args, training_args, model_args)
Loading