Skip to content

Commit

Permalink
Refactor
Browse files Browse the repository at this point in the history
  • Loading branch information
sizzziy committed Sep 16, 2024
1 parent eda4881 commit 63eee4d
Show file tree
Hide file tree
Showing 4 changed files with 9 additions and 9 deletions.
12 changes: 6 additions & 6 deletions paper/Divilkovskiy2024SourceSpace_en.aux
Original file line number Diff line number Diff line change
Expand Up @@ -41,26 +41,26 @@
\newlabel{fig:fig5}{{\caption@xref {fig:fig5}{ on input line 196}}{10}{Pairwise correlation between time series}{figure.caption.2}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {2}{\ignorespaces Function $||\hat {\mathbf {\Sigma }}_{t+1} - \bar {\mathbf {\Sigma }}_{t+1}||_2^2$ for following series: $(1, 3)$ and $(2, 4)$. Minumums: (3; 4) is desired and (-1; 0) is alternative.\relax }}{10}{figure.caption.2}\protected@file@percent }
\citation{mikhalevich2024methodsnonconvexoptimization}
\@writefile{toc}{\contentsline {section}{\numberline {6}Algorithm for reconstructing time series values in case of accurate prediction of the matrix}{12}{section.6}\protected@file@percent }
\@writefile{toc}{\contentsline {section}{\numberline {6}Algorithm for reconstructing time series values in case of accurate prediction of the matrix}{13}{section.6}\protected@file@percent }
\citation{HIGHAM1988103}
\@writefile{toc}{\contentsline {section}{\numberline {7}Algorithm for reconstructing time series values in case of inaccurate matrix prediction}{13}{section.7}\protected@file@percent }
\citation{zhou2021informer}
\@writefile{lof}{\contentsline {figure}{\numberline {3}{\ignorespaces Prediction recovery in case of accurate prediction of correlation matrix $\mathbf {\Sigma }$. $T=20$, $T^\prime =10$\relax }}{14}{figure.caption.3}\protected@file@percent }
\newlabel{fig:fig3}{{3}{14}{Prediction recovery in case of accurate prediction of correlation matrix $\mathbf {\Sigma }$. $T=20$, $T^\prime =10$\relax }{figure.caption.3}{}}
\@writefile{toc}{\contentsline {section}{\numberline {7}Algorithm for reconstructing time series values in case of inaccurate matrix prediction}{14}{section.7}\protected@file@percent }
\citation{zhou2021informer}
\@writefile{lof}{\contentsline {figure}{\numberline {4}{\ignorespaces Prediction reconstruction in case of inaccurate correlation matrix $\mathbf {\Sigma }$ prediction. In addition to the prediction error caused by noise in the correlation matrix a new type of error is added. When selecting a set, it is possible that the diameter is minimised not at the right set, as this is only a necessary condition, but not a sufficient one.\relax }}{15}{figure.caption.4}\protected@file@percent }
\newlabel{fig:fig4}{{4}{15}{Prediction reconstruction in case of inaccurate correlation matrix $\mathbf {\Sigma }$ prediction. In addition to the prediction error caused by noise in the correlation matrix a new type of error is added. When selecting a set, it is possible that the diameter is minimised not at the right set, as this is only a necessary condition, but not a sufficient one.\relax }{figure.caption.4}{}}
\@writefile{toc}{\contentsline {section}{\numberline {8}Experiment}{16}{section.8}\protected@file@percent }
\@writefile{toc}{\contentsline {section}{\numberline {8}Experiment}{15}{section.8}\protected@file@percent }
\@writefile{toc}{\contentsline {paragraph}{Synthetic data.}{16}{section*.5}\protected@file@percent }
\@writefile{lot}{\contentsline {table}{\numberline {1}{\ignorespaces Loss on synthetic data\relax }}{16}{table.caption.6}\protected@file@percent }
\@writefile{toc}{\contentsline {paragraph}{Electricity Transformer Temperature}{16}{section*.8}\protected@file@percent }
\@writefile{toc}{\contentsline {section}{\numberline {9}Conclusion}{16}{section.9}\protected@file@percent }
\@writefile{lof}{\contentsline {figure}{\numberline {5}{\ignorespaces Synthetic data reconstruction plot at $K=10$, Additional noise $\mathcal {N}(0, 0.05)$. \textbf {MAE: 0.116, MSE: 0.025}\relax }}{17}{figure.caption.7}\protected@file@percent }
\newlabel{fig:fig6}{{5}{17}{Synthetic data reconstruction plot at $K=10$, Additional noise $\mathcal {N}(0, 0.05)$. \textbf {MAE: 0.116, MSE: 0.025}\relax }{figure.caption.7}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {6}{\ignorespaces ETTh1 data reconstruction plot at $K=10$, Additional Noise $\mathcal {N}(0, 0.05)$. \textbf {MAE: 0.096, MSE: 0.019}\relax }}{17}{figure.caption.9}\protected@file@percent }
\newlabel{fig:fig7}{{6}{17}{ETTh1 data reconstruction plot at $K=10$, Additional Noise $\mathcal {N}(0, 0.05)$. \textbf {MAE: 0.096, MSE: 0.019}\relax }{figure.caption.9}{}}
\bibdata{references}
\@writefile{lot}{\contentsline {table}{\numberline {2}{\ignorespaces Loss on ETTh1 data\relax }}{18}{table.caption.10}\protected@file@percent }
\@writefile{toc}{\contentsline {section}{\numberline {9}Conclusion}{18}{section.9}\protected@file@percent }
\bibcite{LSTM}{1}
\@writefile{lot}{\contentsline {table}{\numberline {2}{\ignorespaces Loss on ETTh1 data\relax }}{18}{table.caption.10}\protected@file@percent }
\bibcite{SSA}{2}
\bibcite{Biosignals}{3}
\bibcite{boyd2017multiperiod}{4}
Expand Down
Binary file modified paper/Divilkovskiy2024SourceSpace_en.pdf
Binary file not shown.
Binary file modified paper/Divilkovskiy2024SourceSpace_en.synctex.gz
Binary file not shown.
6 changes: 3 additions & 3 deletions paper/Divilkovskiy2024SourceSpace_en.tex
Original file line number Diff line number Diff line change
Expand Up @@ -209,14 +209,14 @@ \section{Pairwise correlation between time series}
\item Similarly, express $\mathbf{\Sigma_t}$ through the values of the series:
\begin{gather*}
\mathbf{\Sigma}_t = \frac{1}{t} \sum_{i=1}^{t} (\mathbf{x}_i-\boldsymbol{\mu}_t)(\mathbf{x}_i-\boldsymbol{\mu}_t)^\intercal;\\
\mathbf{\Sigma}_t = \frac{1}{t} \sum_{i=1}^{t} \mathbf{x}_i \mathbf{x}_i^\intercal - \frac{1}{t} \left( \sum_{i=1}^{t} \mathbf{x}_i\right) \boldsymbol{\mu}_t^\intercal - \boldsymbol{\mu}_t \frac{1}{t} \left( \sum_{i=1}^{t} \mathbf{x}_i^\intercal\right) + \boldsymbol{\mu}_t \boldsymbol{\mu}_t^\intercal = \frac{1}{t} \sum_{i=1}^{t} \mathbf{x}_i \mathbf{x}_i^\intercal - \boldsymbol{\mu}_t \boldsymbol{\mu}_t^\intercal \Rightarrow\\
\mathbf{\Sigma}_t = \frac{1}{t} \sum_{i=1}^{t} \mathbf{x}_i \mathbf{x}_i^\intercal - \frac{1}{t} \left( \sum_{i=1}^{t} \mathbf{x}_i\right) \boldsymbol{\mu}_t^\intercal - \boldsymbol{\mu}_t \frac{1}{t} \left( \sum_{i=1}^{t} \mathbf{x}_i^\intercal\right) + \boldsymbol{\mu}_t \boldsymbol{\mu}_t^\intercal =\\= \frac{1}{t} \sum_{i=1}^{t} \mathbf{x}_i \mathbf{x}_i^\intercal - \boldsymbol{\mu}_t \boldsymbol{\mu}_t^\intercal \Rightarrow\\
\sum_{i=1}^{t} \mathbf{x}_i \mathbf{x}_i^\intercal = t \mathbf{\Sigma}_t + t \boldsymbol{\mu}_t \boldsymbol{\mu}_t^\intercal.
\end{gather*}
\item Express $\mathbf{\Sigma_{t+1}}$ through $\mathbf{\Sigma_t}$ using the previous expressions:
\begin{gather*}
\mathbf{\Sigma}_{t+1} = \frac{1}{t+1} \left(\sum_{i=1}^{t} \mathbf{x}_i \mathbf{x}_i^\intercal + \mathbf{x}_{t+1} \mathbf{x}_{t+1}^\intercal \right) - \boldsymbol{\mu}_{t+1} \boldsymbol{\mu}_{t+1}^\intercal = \\
= \frac{t}{t+1}\mathbf{\Sigma}_t + \frac{t}{t+1}\boldsymbol{\mu}_{t} \boldsymbol{\mu}_{t}^\intercal + \frac{1}{t+1} \mathbf{x}_{t+1} \mathbf{x}_{t+1}^\intercal - \frac{1}{(t+1)^2} (t \boldsymbol{\mu}_t + \mathbf{x}_{t+1})(t \boldsymbol{\mu}_t + \mathbf{x}_{t+1})^\intercal =\\
= \frac{t}{t+1}\mathbf{\Sigma}_t + \frac{t}{t+1}\boldsymbol{\mu}_{t} \boldsymbol{\mu}_{t}^\intercal + \frac{t}{(t+1)^2} \mathbf{x}_{t+1} \mathbf{x}_{t+1}^\intercal - \frac{t^2}{(t+1)^2}\boldsymbol{\mu}_{t} \boldsymbol{\mu}_{t}^\intercal - \frac{t}{(t+1)^2}\boldsymbol{\mu}_{t} \mathbf{x}_{t+1}^\intercal - \frac{t}{(t+1)^2}\mathbf{x}_{t+1} \boldsymbol{\mu}_{t}^\intercal =\\
= \frac{t}{t+1}\mathbf{\Sigma}_t + \frac{t}{t+1}\boldsymbol{\mu}_{t} \boldsymbol{\mu}_{t}^\intercal + \frac{t}{(t+1)^2} \mathbf{x}_{t+1} \mathbf{x}_{t+1}^\intercal -\\- \frac{t^2}{(t+1)^2}\boldsymbol{\mu}_{t} \boldsymbol{\mu}_{t}^\intercal - \frac{t}{(t+1)^2}\boldsymbol{\mu}_{t} \mathbf{x}_{t+1}^\intercal - \frac{t}{(t+1)^2}\mathbf{x}_{t+1} \boldsymbol{\mu}_{t}^\intercal =\\
= \frac{t}{t+1}\mathbf{\Sigma}_t + \frac{t}{t+1}\boldsymbol{\mu}_{t} \boldsymbol{\mu}_{t}^\intercal - \frac{t}{(t+1)^2} \left( -\mathbf{x}_{t+1} \mathbf{x}_{t+1}^\intercal + t\boldsymbol{\mu}_{t} \boldsymbol{\mu}_{t}^\intercal + \boldsymbol{\mu}_{t} \mathbf{x}_{t+1}^\intercal + \mathbf{x}_{t+1} \boldsymbol{\mu}_{t}^\intercal \right) =\\
= \frac{t}{t+1}\mathbf{\Sigma}_t + \frac{t}{t+1}\boldsymbol{\mu}_{t} \boldsymbol{\mu}_{t}^\intercal - \frac{t}{(t+1)^2} \left( -(\mathbf{x}_{t+1}-\boldsymbol{\mu}_t)(\mathbf{x}_{t+1}-\boldsymbol{\mu}_t)^\intercal + (t+1)\boldsymbol{\mu}_{t} \boldsymbol{\mu}_{t}^\intercal \right) =\\
= \frac{t}{t+1}\mathbf{\Sigma}_t + \frac{t}{t+1}\boldsymbol{\mu}_{t} \boldsymbol{\mu}_{t}^\intercal - \frac{t(t+1)}{(t+1)^2}\boldsymbol{\mu}_{t} \boldsymbol{\mu}_{t}^\intercal + \frac{t}{(t+1)^2}(\mathbf{x}_{t+1}-\boldsymbol{\mu}_t)(\mathbf{x}_{t+1}-\boldsymbol{\mu}_t)^\intercal =\\
Expand All @@ -226,7 +226,7 @@ \section{Pairwise correlation between time series}

\item We solve the problem of finding the minimum of the function $||\hat{\mathbf{\Sigma}}_{t+1} - \bar{\mathbf{\Sigma}}_{t+1}||_2^2$. In our case, this is analogous to the equality of this function to zero. Let us write the expression under the norm:
\begin{gather*}
\hat{\mathbf{\Sigma}}_{t+1} - \bar{\mathbf{\Sigma}}_{t+1} = \frac{t}{t+1}\mathbf{\Sigma}_t + \frac{t}{(t+1)^2}(\hat{\mathbf{x}}_{t+1}-\boldsymbol{\mu}_t)(\hat{\mathbf{x}}_{t+1}-\boldsymbol{\mu}_t)^\intercal - \frac{t}{t+1}\mathbf{\Sigma}_t + \frac{t}{(t+1)^2}(\bar{\mathbf{x}}_{t+1}-\boldsymbol{\mu}_t)(\bar{\mathbf{x}}_{t+1}-\boldsymbol{\mu}_t)^\intercal =\\
\hat{\mathbf{\Sigma}}_{t+1} - \bar{\mathbf{\Sigma}}_{t+1} = \frac{t}{t+1}\mathbf{\Sigma}_t + \frac{t}{(t+1)^2}(\hat{\mathbf{x}}_{t+1}-\boldsymbol{\mu}_t)(\hat{\mathbf{x}}_{t+1}-\boldsymbol{\mu}_t)^\intercal -\\- \frac{t}{t+1}\mathbf{\Sigma}_t + \frac{t}{(t+1)^2}(\bar{\mathbf{x}}_{t+1}-\boldsymbol{\mu}_t)(\bar{\mathbf{x}}_{t+1}-\boldsymbol{\mu}_t)^\intercal =\\
=\frac{t}{(t+1)^2}(\hat{\mathbf{x}}_{t+1}-\boldsymbol{\mu}_t)(\hat{\mathbf{x}}_{t+1}-\boldsymbol{\mu}_t)^\intercal -\frac{t}{(t+1)^2}(\bar{\mathbf{x}}_{t+1}-\boldsymbol{\mu}_t)(\bar{\mathbf{x}}_{t+1}-\boldsymbol{\mu}_t)^\intercal.
\end{gather*}
Then, the problem above is equivalent to finding the minimum of the function \[||(\hat{\mathbf{x}}_{t+1}-\boldsymbol{\mu}_t)(\hat{\mathbf{x}}_{t+1}-\boldsymbol{\mu}_t)^\intercal-(\bar{\mathbf{x}}_{t+1}-\boldsymbol{\mu}_t)(\bar{\mathbf{x}}_{t+1}-\boldsymbol{\mu}_t)^\intercal||_2^2.\]
Expand Down

0 comments on commit 63eee4d

Please sign in to comment.