Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
135 changes: 135 additions & 0 deletions examples/foundational/39c-mcp-run-http.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,135 @@
#
# Copyright (c) 2024–2025, Daily
#
# SPDX-License-Identifier: BSD 2-Clause License
#

import argparse
import os

from dotenv import load_dotenv
from loguru import logger
from mcp.client.session_group import StreamableHttpParameters

from pipecat.audio.vad.silero import SileroVADAnalyzer
from pipecat.pipeline.pipeline import Pipeline
from pipecat.pipeline.runner import PipelineRunner
from pipecat.pipeline.task import PipelineParams, PipelineTask
from pipecat.processors.aggregators.openai_llm_context import OpenAILLMContext
from pipecat.services.openai.llm import OpenAILLMService
from pipecat.services.cartesia.tts import CartesiaTTSService
from pipecat.services.deepgram.stt import DeepgramSTTService
from pipecat.services.mcp_service import MCPClient
from pipecat.transports.base_transport import BaseTransport, TransportParams
from pipecat.transports.network.fastapi_websocket import FastAPIWebsocketParams
from pipecat.transports.services.daily import DailyParams

load_dotenv(override=True)

# We store functions so objects (e.g. SileroVADAnalyzer) don't get
# instantiated. The function will be called when the desired transport gets
# selected.
transport_params = {
"daily": lambda: DailyParams(
audio_in_enabled=True,
audio_out_enabled=True,
vad_analyzer=SileroVADAnalyzer(),
),
"twilio": lambda: FastAPIWebsocketParams(
audio_in_enabled=True,
audio_out_enabled=True,
vad_analyzer=SileroVADAnalyzer(),
),
"webrtc": lambda: TransportParams(
audio_in_enabled=True,
audio_out_enabled=True,
vad_analyzer=SileroVADAnalyzer(),
),
}


async def run_example(transport: BaseTransport, _: argparse.Namespace, handle_sigint: bool):
logger.info(f"Starting bot")

stt = DeepgramSTTService(api_key=os.getenv("DEEPGRAM_API_KEY"))

tts = CartesiaTTSService(
api_key=os.getenv("CARTESIA_API_KEY"),
voice_id="71a7ad14-091c-4e8e-a314-022ece01c121", # British Reading Lady
)

llm = OpenAILLMService(
api_key=os.getenv("OPENAI_API_KEY"), model="gpt-4o-mini"
)

try:
# Github MCP docs: https://github.com/github/github-mcp-server
# Enable Github Copilot on your GitHub account. Free tier is ok. (https://github.com/settings/copilot)
# Generate a personal access token. It must be a Fine-grained token, classic tokens are not supported. (https://github.com/settings/personal-access-tokens)
# Set permissions you want to use (eg. "all repositories", "profile: read/write", etc)
mcp = MCPClient(
server_params=StreamableHttpParameters(
url="https://api.githubcopilot.com/mcp/",
headers={"Authorization": f"Bearer {os.getenv('GITHUB_PERSONAL_ACCESS_TOKEN')}"},
)
)
except Exception as e:
logger.error(f"error setting up mcp")
logger.exception("error trace:")

tools = await mcp.register_tools(llm)

system = f"""
You are a helpful LLM in a WebRTC call.
Your goal is to answer questions about the user's GitHub repositories and account.
You have access to a number of tools provided by Github. Use any and all tools to help users.
Your output will be converted to audio so don't include special characters in your answers.
Don't overexplain what you are doing.
Just respond with short sentences when you are carrying out tool calls.
"""

messages = [{"role": "system", "content": system}]

context = OpenAILLMContext(messages, tools)
context_aggregator = llm.create_context_aggregator(context)

pipeline = Pipeline(
[
transport.input(), # Transport user input
stt,
context_aggregator.user(), # User spoken responses
llm, # LLM
tts, # TTS
transport.output(), # Transport bot output
context_aggregator.assistant(), # Assistant spoken responses and tool context
]
)

task = PipelineTask(
pipeline,
params=PipelineParams(
enable_metrics=True,
enable_usage_metrics=True,
),
)

@transport.event_handler("on_client_connected")
async def on_client_connected(transport, client):
logger.info(f"Client connected: {client}")
# Kick off the conversation.
await task.queue_frames([context_aggregator.user().get_context_frame()])

@transport.event_handler("on_client_disconnected")
async def on_client_disconnected(transport, client):
logger.info(f"Client disconnected")
await task.cancel()

runner = PipelineRunner(handle_sigint=handle_sigint)

await runner.run(task)


if __name__ == "__main__":
from pipecat.examples.run import main

main(run_example, transport_params=transport_params)
2 changes: 1 addition & 1 deletion pyproject.toml
Original file line number Diff line number Diff line change
Expand Up @@ -64,7 +64,7 @@ langchain = [ "langchain~=0.3.20", "langchain-community~=0.3.20", "langchain-ope
livekit = [ "livekit~=0.22.0", "livekit-api~=0.8.2", "tenacity~=9.0.0" ]
lmnt = [ "websockets~=13.1" ]
local = [ "pyaudio~=0.2.14" ]
mcp = [ "mcp[cli]~=1.6.0" ]
mcp = [ "mcp[cli]~=1.9.4" ]
mem0 = [ "mem0ai~=0.1.94" ]
mlx-whisper = [ "mlx-whisper~=0.4.2" ]
moondream = [ "einops~=0.8.0", "timm~=1.0.13", "transformers~=4.48.0" ]
Expand Down
90 changes: 71 additions & 19 deletions src/pipecat/services/mcp_service.py
Original file line number Diff line number Diff line change
Expand Up @@ -7,7 +7,7 @@
"""MCP (Model Context Protocol) client for integrating external tools with LLMs."""

import json
from typing import Any, Dict, List, Optional, Union
from typing import Any, Dict, List, Tuple

from loguru import logger

Expand All @@ -17,9 +17,11 @@

try:
from mcp import ClientSession, StdioServerParameters
from mcp.client.session_group import SseServerParameters
from mcp.client.session_group import SseServerParameters, StreamableHttpParameters
from mcp.client.session import ClientSession
from mcp.client.sse import sse_client
from mcp.client.stdio import stdio_client
from mcp.client.streamable_http import streamablehttp_client
except ModuleNotFoundError as e:
logger.error(f"Exception: {e}")
logger.error("In order to use an MCP client, you need to `pip install pipecat-ai[mcp]`.")
Expand All @@ -43,21 +45,25 @@ class MCPClient(BaseObject):

def __init__(
self,
server_params: Union[StdioServerParameters, SseServerParameters],
server_params: Tuple[StdioServerParameters, SseServerParameters, StreamableHttpParameters],
**kwargs,
):
super().__init__(**kwargs)
self._server_params = server_params
self._session = ClientSession

if isinstance(server_params, StdioServerParameters):
self._client = stdio_client
self._register_tools = self._stdio_register_tools
elif isinstance(server_params, SseServerParameters):
self._client = sse_client
self._register_tools = self._sse_register_tools
elif isinstance(server_params, StreamableHttpParameters):
self._client = streamablehttp_client
self._register_tools = self._streamable_http_register_tools
else:
raise TypeError(
f"{self} invalid argument type: `server_params` must be either StdioServerParameters or SseServerParameters."
f"{self} invalid argument type: `server_params` must be either StdioServerParameters, SseServerParameters, or StreamableHttpParameters."
)

async def register_tools(self, llm) -> ToolsSchema:
Expand All @@ -75,6 +81,7 @@ async def register_tools(self, llm) -> ToolsSchema:
tools_schema = await self._register_tools(llm)
return tools_schema


def _convert_mcp_schema_to_pipecat(
self, tool_name: str, tool_schema: Dict[str, Any]
) -> FunctionSchema:
Expand Down Expand Up @@ -104,7 +111,7 @@ def _convert_mcp_schema_to_pipecat(
return schema

async def _sse_register_tools(self, llm) -> ToolsSchema:
"""Register all available mcp.run tools with the LLM service.
"""Register all available mcp tools with the LLM service.

Args:
llm: The Pipecat LLM service to register tools with
Expand All @@ -120,15 +127,12 @@ async def mcp_tool_wrapper(
context: any,
result_callback: any,
) -> None:
"""Wrapper for mcp.run tool calls to match Pipecat's function call interface."""
"""Wrapper for mcp tool calls to match Pipecat's function call interface."""
logger.debug(f"Executing tool '{function_name}' with call ID: {tool_call_id}")
logger.trace(f"Tool arguments: {json.dumps(arguments, indent=2)}")
try:
async with self._client(
url=self._server_params.url,
headers=self._server_params.headers,
timeout=self._server_params.timeout,
sse_read_timeout=self._server_params.sse_read_timeout,
**self._server_params.model_dump()
) as (read, write):
async with self._session(read, write) as session:
await session.initialize()
Expand All @@ -140,20 +144,18 @@ async def mcp_tool_wrapper(
await result_callback(error_msg)

logger.debug(f"SSE server parameters: {self._server_params}")
logger.debug("Starting registration of mcp tools")

async with self._client(
url=self._server_params.url,
headers=self._server_params.headers,
timeout=self._server_params.timeout,
sse_read_timeout=self._server_params.sse_read_timeout,
**self._server_params.model_dump()
) as (read, write):
async with self._session(read, write) as session:
await session.initialize()
tools_schema = await self._list_tools(session, mcp_tool_wrapper, llm)
return tools_schema

async def _stdio_register_tools(self, llm) -> ToolsSchema:
"""Register all available mcp.run tools with the LLM service.
"""Register all available mcp tools with the LLM service.

Args:
llm: The Pipecat LLM service to register tools with
Expand All @@ -169,7 +171,7 @@ async def mcp_tool_wrapper(
context: any,
result_callback: any,
) -> None:
"""Wrapper for mcp.run tool calls to match Pipecat's function call interface."""
"""Wrapper for mcp tool calls to match Pipecat's function call interface."""
logger.debug(f"Executing tool '{function_name}' with call ID: {tool_call_id}")
logger.trace(f"Tool arguments: {json.dumps(arguments, indent=2)}")
try:
Expand All @@ -183,14 +185,64 @@ async def mcp_tool_wrapper(
logger.exception("Full exception details:")
await result_callback(error_msg)

logger.debug("Starting registration of mcp.run tools")
logger.debug("Starting registration of mcp tools")

async with self._client(self._server_params) as streams:
async with self._session(streams[0], streams[1]) as session:
await session.initialize()
tools_schema = await self._list_tools(session, mcp_tool_wrapper, llm)
return tools_schema

async def _streamable_http_register_tools(self, llm) -> ToolsSchema:
"""Register all available mcp tools with the LLM service using streamable HTTP.
Args:
llm: The Pipecat LLM service to register tools with
Returns:
A ToolsSchema containing all registered tools
"""

async def mcp_tool_wrapper(
function_name: str,
tool_call_id: str,
arguments: Dict[str, Any],
llm: any,
context: any,
result_callback: any,
) -> None:
"""Wrapper for mcp tool calls to match Pipecat's function call interface."""
logger.debug(f"Executing tool '{function_name}' with call ID: {tool_call_id}")
logger.trace(f"Tool arguments: {json.dumps(arguments, indent=2)}")
try:
async with self._client(
**self._server_params.model_dump()
) as (
read_stream,
write_stream,
_,
):
async with self._session(read_stream, write_stream) as session:
await session.initialize()
await self._call_tool(session, function_name, arguments, result_callback)
except Exception as e:
error_msg = f"Error calling mcp tool {function_name}: {str(e)}"
logger.error(error_msg)
logger.exception("Full exception details:")
await result_callback(error_msg)

logger.debug("Starting registration of mcp tools using streamable HTTP")

async with self._client(
**self._server_params.model_dump()
) as (
read_stream,
write_stream,
_,
):
async with self._session(read_stream, write_stream) as session:
await session.initialize()
tools_schema = await self._list_tools(session, mcp_tool_wrapper, llm)
return tools_schema

async def _call_tool(self, session, function_name, arguments, result_callback):
logger.debug(f"Calling mcp tool '{function_name}'")
try:
Expand Down Expand Up @@ -235,7 +287,7 @@ async def _list_tools(self, session, mcp_tool_wrapper, llm):
# Convert the schema
function_schema = self._convert_mcp_schema_to_pipecat(
tool_name,
{"description": tool.description, "input_schema": tool.inputSchema},
{"description": tool.description, "input_schema": tool.inputSchema}
)

# Register the wrapped function
Expand All @@ -254,4 +306,4 @@ async def _list_tools(self, session, mcp_tool_wrapper, llm):
logger.debug(f"Completed registration of {len(tool_schemas)} tools")
tools_schema = ToolsSchema(standard_tools=tool_schemas)

return tools_schema
return tools_schema