Skip to content

gReLU is a python library to train, interpret, and apply deep learning models to DNA sequences.

License

Notifications You must be signed in to change notification settings

Genentech/gReLU

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Mar 17, 2025
548b7c2 · Mar 17, 2025
Mar 10, 2025
Mar 12, 2025
Feb 20, 2025
Mar 17, 2025
Mar 11, 2025
Mar 3, 2025
Feb 26, 2025
Apr 29, 2024
Mar 17, 2025
Nov 9, 2024
Jun 14, 2024
Apr 29, 2024
Feb 20, 2025
Jan 31, 2025
Nov 20, 2024
Feb 3, 2025
Apr 29, 2024

Repository files navigation

gReLU

gReLU is a Python library to train, interpret, and apply deep learning models to DNA sequences. Code documentation is available here.

Flowchart

Installation

To install from source:

git clone https://github.com/Genentech/gReLU.git
cd gReLU
pip install .

To install using pip:

pip install gReLU

Typical installation time including all dependencies is under 10 minutes.

To train or use transformer models containing flash attention layers, flash-attn needs to be installed first:

conda install -c conda-forge cudatoolkit-dev -y
pip install torch ninja
pip install flash-attn --no-build-isolation
pip install gReLU

Contributing

See our contribution guide.

Additional requirements

If you want to use genome annotation features through the function grelu.io.genome.read_gtf, you will need to install the following UCSC utilities: genePredToBed, genePredToGtf, bedToGenePred, gtfToGenePred, gff3ToGenePred.

If you want to create bigWig files through the function grelu.data.preprocess.make_insertion_bigwig, you will need to install the following UCSC utilities: bedGraphToBigWig.

UCSC utilities can be installed from http://hgdownload.cse.ucsc.edu/admin/exe/, for example using the following commands:

rsync -aP rsync://hgdownload.soe.ucsc.edu/genome/admin/exe/linux.x86_64/bedGraphToBigWig /usr/bin/
rsync -aP rsync://hgdownload.soe.ucsc.edu/genome/admin/exe/linux.x86_64/genePredToBed /usr/bin/
rsync -aP rsync://hgdownload.soe.ucsc.edu/genome/admin/exe/linux.x86_64/genePredToGtf /usr/bin/
rsync -aP rsync://hgdownload.soe.ucsc.edu/genome/admin/exe/linux.x86_64/bedToGenePred /usr/bin/
rsync -aP rsync://hgdownload.soe.ucsc.edu/genome/admin/exe/linux.x86_64/gtfToGenePred /usr/bin/
rsync -aP rsync://hgdownload.soe.ucsc.edu/genome/admin/exe/linux.x86_64/gff3ToGenePred /usr/bin/

or via bioconda:

conda install -y \
bioconda::ucsc-bedgraphtobigwig \
bioconda::ucsc-genepredtobed    \
bioconda::ucsc-genepredtogtf    \
bioconda::ucsc-bedtogenepred    \
bioconda::ucsc-gtftogenepred    \
bioconda::ucsc-gff3togenepred

If you want to create ATAC-seq coverage bigWig files using grelu.data.preprocess.make_insertion_bigwig, you will need to install bedtools. See https://bedtools.readthedocs.io/en/latest/content/installation.html for instructions.

Citation

Please cite our preprint: https://www.biorxiv.org/content/10.1101/2024.09.18.613778v1

About

gReLU is a python library to train, interpret, and apply deep learning models to DNA sequences.

Resources

License

Stars

Watchers

Forks

Packages

No packages published