-
Notifications
You must be signed in to change notification settings - Fork 1
AnasaziLOBPCG
sjdeal edited this page Jul 22, 2015
·
1 revision
This example computes the eigenvalues of largest magnitude of an eigenvalue problem A x = λ x, using Anasazi's implementation of the LOBPCG (Locally Optimal Block-Preconditioned Conjugate Gradient) method.
-
"Toward the optimal preconditioned eigensolver: Locally optimal block preconditioned conjugate gradient method", U. L. Hetmaniuk and R. B. Lehoucq, SIAM J. Sci. Comput. 23 (2001), pp. 517-541.
-
"Basis selection in LOBPCG", U. L. Hetmaniuk and R. B. Lehoucq, J. Comput. Physics 218 (2006), pp. 324-332.
// This example computes the eigenvalues of largest magnitude of an
// eigenvalue problem $A x = \lambda x$, using Anasazi's
// implementation of the LOBPCG method.
// Include header for LOBPCG eigensolver
#include "AnasaziLOBPCGSolMgr.hpp"
// Include header to define eigenproblem Ax = \lambda*x
#include "AnasaziBasicEigenproblem.hpp"
// Include header to provide Anasazi with Epetra adapters. If you
// plan to use Tpetra objects instead of Epetra objects, include
// AnasaziTpetraAdapter.hpp instead; do analogously if you plan to use
// Thyra objects instead of Epetra objects.
#include "AnasaziEpetraAdapter.hpp"
// Include header for Epetra sparse matrix and multivector.
#include "Epetra_CrsMatrix.h"
#include "Epetra_MultiVector.h"
// The Trilinos package Galeri has many example problems.
#include "Galeri_Maps.h"
#include "Galeri_CrsMatrices.h"
// Include selected communicator class required by Epetra objects
#ifdef EPETRA_MPI
# include "Epetra_MpiComm.h"
#else
# include "Epetra_SerialComm.h"
#endif // EPETRA_MPI
// ****************************************************************************
// BEGIN MAIN ROUTINE
// ****************************************************************************
int
main (int argc, char *argv[])
{
using Teuchos::RCP;
using Teuchos::rcp;
using std::cerr;
using std::cout;
using std::endl;
// Anasazi solvers have the following template parameters:
//
// - Scalar: The type of dot product results.
// - MV: The type of (multi)vectors.
// - OP: The type of operators (functions from multivector to
// multivector). A matrix (like Epetra_CrsMatrix) is an example
// of an operator; an Ifpack preconditioner is another example.
//
// Here, Scalar is double, MV is Epetra_MultiVector, and OP is
// Epetra_Operator.
typedef Epetra_MultiVector MV;
typedef Epetra_Operator OP;
typedef Anasazi::MultiVecTraits<double, Epetra_MultiVector> MVT;
#ifdef EPETRA_MPI
MPI_Init (&argc, &argv);
Epetra_MpiComm Comm (MPI_COMM_WORLD);
#else
Epetra_SerialComm Comm;
#endif // EPETRA_MPI
const int MyPID = Comm.MyPID ();
//
// Set up the test problem.
//
// We use Trilinos' Galeri package to construct a test problem.
// Here, we use a discretization of the 2-D Laplacian operator.
// The global mesh size is nx * nx.
//
Teuchos::ParameterList GaleriList;
const int nx = 30;
GaleriList.set ("n", nx * nx);
GaleriList.set ("nx", nx);
GaleriList.set ("ny", nx);
RCP<Epetra_Map> Map = rcp (Galeri::CreateMap ("Linear", Comm, GaleriList));
RCP<Epetra_RowMatrix> A =
rcp (Galeri::CreateCrsMatrix ("Laplace2D", &*Map, GaleriList));
// Set eigensolver parameters.
const double tol = 1.0e-8; // convergence tolerance
const int nev = 10; // number of eigenvalues for which to solve
const int blockSize = 5; // block size (number of eigenvectors processed at once)
const int maxIters = 500; // maximum number of iterations
// Create a set of initial vectors to start the eigensolver.
// This needs to have the same number of columns as the block size.
RCP<MV> ivec = rcp (new MV (*Map, blockSize));
ivec->Random ();
// Create the eigenproblem. This object holds all the stuff about
// your problem that Anasazi will see. In this case, it knows about
// the matrix A and the inital vectors.
RCP<Anasazi::BasicEigenproblem<double, MV, OP> > problem =
rcp (new Anasazi::BasicEigenproblem<double, MV, OP> (A, ivec));
// Tell the eigenproblem that the operator A is symmetric.
problem->setHermitian (true);
// Set the number of eigenvalues requested
problem->setNEV (nev);
// Tell the eigenproblem that you are finishing passing it information.
const bool boolret = problem->setProblem();
if (boolret != true) {
if (MyPID == 0) {
cerr << "Anasazi::BasicEigenproblem::setProblem() returned an error." << endl;
}
#ifdef EPETRA_MPI
MPI_Finalize ();
#endif // EPETRA_MPI
return -1;
}
// Create a ParameterList, to pass parameters into the LOBPCG
// eigensolver.
Teuchos::ParameterList anasaziPL;
anasaziPL.set ("Which", "LM");
anasaziPL.set ("Block Size", blockSize);
anasaziPL.set ("Maximum Iterations", maxIters);
anasaziPL.set ("Convergence Tolerance", tol);
anasaziPL.set ("Full Ortho", true);
anasaziPL.set ("Use Locking", true);
anasaziPL.set ("Verbosity", Anasazi::Errors + Anasazi::Warnings +
Anasazi::TimingDetails + Anasazi::FinalSummary);
// Create the LOBPCG eigensolver.
Anasazi::LOBPCGSolMgr<double, MV, OP> anasaziSolver (problem, anasaziPL);
// Solve the eigenvalue problem.
//
// Note that creating the eigensolver is separate from solving it.
// After creating the eigensolver, you may call solve() multiple
// times with different parameters or initial vectors. This lets
// you reuse intermediate state, like allocated basis vectors.
Anasazi::ReturnType returnCode = anasaziSolver.solve ();
if (returnCode != Anasazi::Converged && MyPID == 0) {
cout << "Anasazi eigensolver did not converge." << endl;
}
// Get the eigenvalues and eigenvectors from the eigenproblem.
Anasazi::Eigensolution<double,MV> sol = problem->getSolution ();
// Anasazi returns eigenvalues as Anasazi::Value, so that if
// Anasazi's Scalar type is real-valued (as it is in this case), but
// some eigenvalues are complex, you can still access the
// eigenvalues correctly. In this case, there are no complex
// eigenvalues, since the matrix pencil is symmetric.
std::vector<Anasazi::Value<double> > evals = sol.Evals;
RCP<MV> evecs = sol.Evecs;
// Compute residuals.
std::vector<double> normR (sol.numVecs);
if (sol.numVecs > 0) {
Teuchos::SerialDenseMatrix<int,double> T (sol.numVecs, sol.numVecs);
MV tempAevec (*Map, sol.numVecs);
T.putScalar (0.0);
for (int i=0; i<sol.numVecs; ++i) {
T(i,i) = evals[i].realpart;
}
A->Apply (*evecs, tempAevec);
MVT::MvTimesMatAddMv (-1.0, *evecs, T, 1.0, tempAevec);
MVT::MvNorm (tempAevec, normR);
}
// Print the results on MPI process 0.
if (MyPID == 0) {
cout << "Solver manager returned "
<< (returnCode == Anasazi::Converged ? "converged." : "unconverged.")
<< endl << endl
<< "------------------------------------------------------" << endl
<< std::setw(16) << "Eigenvalue"
<< std::setw(18) << "Direct Residual"
<< endl
<< "------------------------------------------------------" << endl;
for (int i=0; i<sol.numVecs; ++i) {
cout << std::setw(16) << evals[i].realpart
<< std::setw(18) << normR[i] / evals[i].realpart
<< endl;
}
cout << "------------------------------------------------------" << endl;
}
#ifdef EPETRA_MPI
MPI_Finalize () ;
#endif // EPETRA_MPI
return 0;
}
Wiki Pages
Trilinos Hands On Tutorial
[Zoltan Hands On Tutorial] (ZoltanHandsOnTutorial)
Links
Trilinos Home Page
Trilinos "Getting Started"