-
Notifications
You must be signed in to change notification settings - Fork 3
Pyrazine Side Chain Modifications Amides
A library of amides (including the m-Cl benzylamide, MMV668958) gave some compounds with promising potency. However, several amides (derived from aliphatic or anilines) either showed lower potency or were inactive. The RLM of MMV668958 was poor - perhaps due to benzylic oxidation. Alpha-substitution at the benzylic position or constraining the benzylamine into an aminoindane did not improve potency. Several attempts to make aniline-amides with improved potency against Pfal failed. Loading the aniline ring with lipophilic substituents marginally improved potency but led to poor RLM stability.
The p-Cl benzanilide MMV670246, although not active against PfNF54, showed good RLM stability perhaps due to lack of benzylic metabolism. However, its rat PK showed high clearance. The potent m-Cl (MMV669542) analog had poor RLM stability.
Planning of amide analogs: GH Issues 110, 101, 123, 207, Joie Garfunkel's suggestions. Planning of more amide analogs in July 2014: GHI 232.
Aims, Concerns and Current Interest in Series 4
Modification of Core Triazolopyrazine
Modification of Pyrazine Substitution Pattern
Modification of the Triazole Substitution
Pyrazine Side Chain Modifications - Ethers
Pyrazine Side Chain Modifications - Amides
Pyrazine Side Chain Modifications - Reversed Amides
Pyrazine Side Chain Modifications - Others
Biological Data Currently not Incorporated into the Main Wiki Sections
Mechanism of Action: Possible PfATP4 Activity Deduced from Parasite Ion Regulation Assays
Synthesis of the Ether-Linked Series
Synthesis of the Amide-Linked Series
Synthesis of the Reverse Amide- Linked Series
Synthesis of Benzylic Functionalised Ether-Linked Series
Alternative Routes to the Triazolopyrazine Core
Triazolopyrazine telesubstitution
Chirality/Stereogenic Centres in This Series
Other Sources of Compounds Relevant to this Series
Desirable Compounds Not Yet Synthesised