Skip to content

PublicationsUsingBiopieces

Martin Asser Hansen edited this page Oct 1, 2015 · 1 revision

A number of publications mention the use of Biopieces.


http://www.ncbi.nlm.nih.gov/pubmed/21914725

Nucleic Acids Res. 2012 Jan;40(1):438-48. Epub 2011 Sep 13.

The biogenesis and characterization of mammalian microRNAs of mirtron origin.

Sibley CR, Seow Y, Saayman S, Dijkstra KK, El Andaloussi S, Weinberg MS, Wood MJ.

Abstract

Mirtrons, short hairpin pre-microRNA (miRNA) mimics directly produced by intronic splicing, have recently been identified and experimentally confirmed in invertebrates. While there is evidence to suggest several mammalian miRNAs have mirtron origins, this has yet to be experimentally demonstrated. Here, we characterize the biogenesis of mammalian mirtrons by ectopic expression of splicing-dependent mirtron precursors. The putative mirtrons hsa-miR-877, hsa-miR-1226 and mmu-miR-1224 were designed as introns within eGFP. Correct splicing and function of these sequences as introns was shown through eGFP fluorescence and RT-PCR, while all mirtrons suppressed perfectly complementary luciferase reporter targets to levels similar to that of corresponding independently expressed pre-miRNA controls. Splicing-deficient mutants and disruption of key steps in miRNA biogenesis demonstrated that mirtron-mediated gene knockdown was splicing-dependent, Drosha-independent and had variable dependence on RNAi pathway elements following pre-miRNA formation. The silencing effect of hsa-miR-877 was further demonstrated to be mediated by the generation of short anti-sense RNA species expressed with low abundance. Finally, the mammalian mirtron hsa-miR-877 was shown to reduce mRNA levels of an endogenous transcript containing hsa-miR-877 target sites in neuronal SH-SY5Y cells. This work confirms the mirtron origins of three mammalian miRNAs and suggests that they are a functional class of splicing-dependent miRNAs which are physiologically active.


http://www.ncbi.nlm.nih.gov/pubmed/21672259

BMC Genomics. 2011 Jun 15;12(1):315.

The characterisation of piRNA-related 19mers in the mouse.

Oey HM, Youngson NA, Whitelaw E.

Abstract

BACKGROUND: Piwi interacting RNA, or piRNA, is a class of small RNA almost exclusively expressed in the germline where they serve essential roles in retrotransposon silencing. There are two types, primary and secondary piRNA, and the latter is a product of enzymatic cleavage of retrotransposons' transcripts directed by the former. Recently, a new class of 19nt long RNA was discovered that is specific to testis and appears to be linked to secondary piRNA biogenesis. RESULTS: We locate clusters of the testis-specific 19mers, which we call piRNA-related 19mers (pr19RNA), and characterise the transcripts from which they are derived. Most pr19RNA clusters were associated with retrotransposons and unannotated antisense transcripts overlapping piRNA clusters. At these loci the abundance of 19mers was found to be greater than that of secondary piRNAs. CONCLUSION: We find that pr19RNAs are distinguished from other RNA populations by their length and flanking sequence, allowing their identification without requiring overlapping piRNAs. Using such sequence features allows identification of the source transcripts, and we suggest that these likely represent the substrates of primary piRNA-guided RNA cleavage events. While pr19RNAs appear not to bind directly to Miwi or Mili, their abundance relative to secondary piRNAs, in combination with their precise length, suggests they may be more than by-products of secondary piRNA biogenesis.


http://www.ncbi.nlm.nih.gov/pubmed/20805289

RNA. 2010 Aug 30.

Dynamic isomiR regulation in Drosophila development.

Fernandez-Valverde SL, Taft RJ, Mattick JS.

Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia.

Abstract

Several recent reports have demonstrated that microRNAs (miRNAs) can exhibit heterogeneous ends and post-transcriptional nontemplate 3' end additions of uridines or adenosines. Using two small RNA deep-sequencing data sets, we show here that these miRNA isoforms (isomiRs) are differentially expressed across Drosophila melanogaster development and tissues. Specifically, we demonstrate that: (1) nontemplate nucleotide additions of adenosines to miRNA 3' ends are highly abundant in early development; (2) a subset of miRNAs with nontemplate 3' Us are expressed in adult tissues; and (3) the size of at least eight "mature" (unmodified) miRNAs varies in a life-cycle or tissue-specific manner. These results suggest that subtle variability in isomiR expression, which is widely thought to be the result of inexact Dicer processing, is regulated and biologically meaningful. Indeed, a subset of the miRNAs enriched for 3' adenosine additions during early embryonic development, including miR-282 and miR-312, show enrichment for target sites in developmental genes that are expressed during late embryogenesis, suggesting that nontemplate additions increase miRNA stability or strengthen miRNA:target interactions. This work suggests that isomiR expression is an important aspect of miRNA biology, which warrants further investigation.


http://www.ncbi.nlm.nih.gov/pubmed/20478825

Nucleic Acids Res. 2010 Jul 1;38 Suppl:W385-91. Epub 2010 May 16.

DSAP: deep-sequencing small RNA analysis pipeline.

Huang PJ, Liu YC, Lee CC, Lin WC, Gan RR, Lyu PC, Tang P.

Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan.

Abstract

DSAP is an automated multiple-task web service designed to provide a total solution to analyzing deep-sequencing small RNA datasets generated by next-generation sequencing technology. DSAP uses a tab-delimited file as an input format, which holds the unique sequence reads (tags) and their corresponding number of copies generated by the Solexa sequencing platform. The input data will go through four analysis steps in DSAP: (i) cleanup: removal of adaptors and poly-A/T/C/G/N nucleotides; (ii) clustering: grouping of cleaned sequence tags into unique sequence clusters; (iii) non-coding RNA (ncRNA) matching: sequence homology mapping against a transcribed sequence library from the ncRNA database Rfam (http://rfam.sanger.ac.uk/); and (iv) known miRNA matching: detection of known miRNAs in miRBase (http://www.mirbase.org/) based on sequence homology. The expression levels corresponding to matched ncRNAs and miRNAs are summarized in multi-color clickable bar charts linked to external databases. DSAP is also capable of displaying miRNA expression levels from different jobs using a log(2)-scaled color matrix. Furthermore, a cross-species comparative function is also provided to show the distribution of identified miRNAs in different species as deposited in miRBase. DSAP is available at http://dsap.cgu.edu.tw.


http://www.ncbi.nlm.nih.gov/pubmed/20595017

Genomics. 2010 Jun 4.

Identification of conserved Drosophila-specific euchromatin-restricted non-coding sequence motifs.

Jung CH, Makunin IV, Mattick JS.

Institute for Molecular Bioscience, The University of Queensland, St Lucia QLD 4072, Australia.

Abstract

Non-protein-coding DNA comprises the majority of animal genomes but its functions are largely unknown. We identified over 17,000 different tetranucleotide pairs in the Drosophila melanogaster genome that are over-represented at distances up to 100nt in conserved non-exonic sequences. Those exhibiting the highest information content in surrounding nucleotides were classified into five groups: tRNAs, motifs associated with histone genes, Suppressor-of-Hairy-wing binding sites, and two sets of previously unrecognized motifs (DLM3 and DLM4). There are hundreds to thousands of copies of DLM3 and DLM4, respectively, in the genome, located almost exclusively in non-coding regions. They have similar copy numbers among drosophilids, but are largely absent in other insects. DLM3 is likely a cis-regulatory element, whereas DLM4 sequences are capable of forming a short hairpin structure and are expressed as approximately 80nt RNAs. This work reports the existence of Drosophila genus-specific sequence motifs, and suggests that many more novel functional elements may be discovered in genomes using the general approach outlined herein.


http://www.ncbi.nlm.nih.gov/pubmed/20113528

BMC Genomics. 2010 Feb 1;11:77.

Identification of novel non-coding RNAs using profiles of short sequence reads from next generation sequencing data.

Jung CH, Hansen MA, Makunin IV, Korbie DJ, Mattick JS.

Institute for Molecular Bioscience, University of Queensland, St. Lucia QLD 4072, Australia.

Abstract

BACKGROUND: The increasing interest in small non-coding RNAs (ncRNAs) such as microRNAs (miRNAs), small interfering RNAs (siRNAs) and Piwi-interacting RNAs (piRNAs) and recent advances in sequencing technology have yielded large numbers of short (18-32 nt) RNA sequences from different organisms, some of which are derived from small nucleolar RNAs (snoRNAs) and transfer RNAs (tRNAs). We observed that these short ncRNAs frequently cover the entire length of annotated snoRNAs or tRNAs, which suggests that other loci specifying similar ncRNAs can be identified by clusters of short RNA sequences. RESULTS: We combined publicly available datasets of tens of millions of short RNA sequence tags from Drosophila melanogaster, and mapped them to the Drosophila genome. Approximately 6 million perfectly mapping sequence tags were then assembled into 521,302 tag-contigs (TCs) based on tag overlap. Most transposon-derived sequences, exons and annotated miRNAs, tRNAs and snoRNAs are detected by TCs, which show distinct patterns of length and tag-depth for different categories. The typical length and tag-depth of snoRNA-derived TCs was used to predict 7 previously unrecognized box H/ACA and 26 box C/D snoRNA candidates. We also identified one snRNA candidate and 86 loci with a high number of tags that are yet to be annotated, 7 of which have a particular 18mer motif and are located in introns of genes involved in development. A subset of new snoRNA candidates and putative ncRNA candidates was verified by Northern blot. CONCLUSIONS: In this study, we have introduced a new approach to identify new members of known classes of ncRNAs based on the features of TCs corresponding to known ncRNAs. A large number of the identified TCs are yet to be examined experimentally suggesting that many more novel ncRNAs remain to be discovered.


http://www.ncbi.nlm.nih.gov/pubmed/19474147

RNA. 2009 Jul;15(7):1233-40. Epub 2009 May 27.

Small RNAs derived from snoRNAs.

Taft RJ, Glazov EA, Lassmann T, Hayashizaki Y, Carninci P, Mattick JS.

Australian Research Council Special Research Centre for Functional and Applied Genomics, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia.

Abstract

Small nucleolar RNAs (snoRNAs) guide RNA modification and are localized in nucleoli and Cajal bodies in eukaryotic cells. Components of the RNA silencing pathway associate with these structures, and two recent reports have revealed that a human and a protozoan snoRNA can be processed into miRNA-like RNAs. Here we show that small RNAs with evolutionary conservation of size and position are derived from the vast majority of snoRNA loci in animals (human, mouse, chicken, fruit fly), Arabidopsis, and fission yeast. In animals, sno-derived RNAs (sdRNAs) from H/ACA snoRNAs are predominantly 20-24 nucleotides (nt) in length and originate from the 3' end. Those derived from C/D snoRNAs show a bimodal size distribution at approximately 17-19 nt and >27 nt and predominantly originate from the 5' end. SdRNAs are associated with AGO7 in Arabidopsis and Ago1 in fission yeast with characteristic 5' nucleotide biases and show altered expression patterns in fly loquacious and Dicer-2 and mouse Dicer1 and Dgcr8 mutants. These findings indicate that there is interplay between the RNA silencing and snoRNA-mediated RNA processing systems, and that sdRNAs comprise a novel and ancient class of small RNAs in eukaryotes.


Clone this wiki locally