-
Notifications
You must be signed in to change notification settings - Fork 16
Data Analysis Modules: panoply_rna_protein_correlation
wcorinne edited this page Aug 25, 2025
·
2 revisions
Measures and plots correlation between mRNA expression and protein abundance for each gene-protein pair using pearson correlation. Protein IDs are mapped to gene symbols; PTM sites are rolled-up to the protein level before mapping to gene symbols. The module outputs correlation tables and histograms summarizing RNA-protein correlation. See (Zhang et al., 2014) and (Mertins et al., 2016).
Required inputs:
-
inputData
: (.tar
file) tarball frompanoply_normalize_ms_data
or normalized protein/PTM site data ingct
format (whenstandalone
isTRUE
) -
rnaExpr
: (.gct
file) RNA expression data -
type
: proteomics data type -
standalone
: (String) set toTRUE
to run as a self-contained module; ifTRUE
theanalysisDir
input is required -
yaml
: (.yaml
file) parameters inyaml
format
Optional inputs:
-
rnaSDthreshold
: (Int, default = 1) for standard deviation variation filter; set to NA to disable -
profilePlotTopN
: (Int, default = 25) plots showing RNA and protein levels across samples for thetopN
gene-protein pairs (sorted by correlation) are generated -
analysisDir
: (String) name of analysis directory -
outFile
: (String, default = "panoply_rna_protein_correlation-output.tar") output.tar
file name
-
outputs
: Tarball including the following files in therna
subdirectory:- Harmonized (
rna-seq.gct
) and filtered (rna-seq-sdfilter.gct
) RNA data with sample order matching that in the proteome data table - Tables listing RNA-protein correlation for every gene-protein pair (
*-mrna-cor.tsv
) and the best gene-protein pairs with highest (correlation > 0.7), statistically significant correlation (*-mrna-cor-best.tsv
) - Plots showing histograms of RNA-protein correlation for the following gene-protein pairs:
- all gene-protein pairs (
*-mrna-cor.pdf
) - best pairs (
*-mrna-cor-best.pdf
) - statistically significant pairs (
*-mrna-cor-sig.pdf
) - all pairs, with statistically significant pairs highlighted (
*-mrna-cor-combined.pdf
) - plots showing RNA and protein levels across samples for the
topN
gene-protein pairs
- all gene-protein pairs (
- Harmonized (
- Zhang, B., Wang, J., XiaojingWang, Zhu, J., Liu, Q., Shi, Z., Chambers, M., Zimmerman, L., Shaddox, K., Kim, S.,et al. (2014). Proteogenomic characterization of human colon and rectal cancer. Nature https://dx.doi.org/10.1038/nature13438
- Mertins, P., Mani, D., Ruggles, K., Gillette, M., Clauser, K., Wang, P., Wang, X., Qiao, J., Cao, S., Petralia, F., et al. (2016). Proteogenomics connects somatic mutations to signalling in breast cancer. Nature 534(7605), 55 - 62. https://dx.doi.org/10.1038/nature18003.
- Home
- PANOPLY Tutorial
- Data Preparation Modules
-
Data Analysis Modules
- panoply_association
- panoply_blacksheep
- panoply_clumps_ptm_diffexp
- panoply_clumps_ptm
- panoply_clumps_ptm_postprocess
- panoply_cmap_analysis
- panoply_cna_correlation
- panoply_cons_clust
- panoply_immune_analysis
- panoply_metaboanalyst
- panoply_mimp
- panoply_nmf
- panoply_nmf_postprocess
- panoply_omicsev
- panoply_quilts
- panoply_rna_protein_correlation
- panoply_sankey
- panoply_ssgsea
-
Report Modules
- panoply_association_report
- panoply_blacksheep_report
- panoply_clumps_ptm_report
- panoply_cna_correlation_report
- panoply_cons_clust_report
- panoply_immune_analysis_report
- panoply_metaboanalyst_report
- panoply_mimp_report
- panoply_nmf_report
- panoply_normalize_ms_data_report
- panoply_rna_protein_correlation_report
- panoply_sampleqc_report
- panoply_sankey_report
- panoply_ssgsea_report
- Support Modules
- Navigating Results
- PANOPLY without Terra
- Customizing PANOPLY
-
Workflows
- panoply_association_workflow
- panoply_blacksheep_workflow
- panoply_clumps_ptm_workflow
- panoply_immune_analysis_workflow
- panoply_metaboanalyst_workflow
- panoply_nmf_workflow
- panoply_nmf_internal_workflow
- panoply_normalize_filter_workflow
- panoply_process_SM_table
- panoply_sankey_workflow
- panoply_ssgsea_workflow
- Pipelines