-
Notifications
You must be signed in to change notification settings - Fork 16
Data Preparation Modules: panoply_sampleqc
wcorinne edited this page Aug 25, 2025
·
2 revisions
This module assess sample QC using CNA, RNA and proteome data (mapped to gene symbols) based on the following methods (Mertins et al., 2016):
- Sample-level correlation between proteome, RNA, and CNA. Inspecting heatmaps of pairwise correlation between these data types can identify sample swaps or mislabeling
- Co-clustering of RNA and protein data, using only genes with good correlation (>
corThreshold
). Similarity of sample material used for RNA and protein profiling should result in RNA and protein clustering together for a large fraction of samples - Comparison of ESTIMATE (Yoshihara et al., 2013) scores for RNA, protein and CNA.
Required inputs:
-
tarball
: (.tar
file) tarball frompanoply_harmonize
-
type
: (String) proteomics data type -
yaml
: (.yaml
file) parameters inyaml
format
Optional inputs:
-
corThreshold
: (Float, default = 0.4) correlation threshold for filtering genes in RNA and protein data for co-clustering -
outFile
: (String, default = "panoply_sampleqc-output.tar") output.tar
file name
-
outputs
Tarball including the following files in thesample-qc
subdirectory:- ESTIMATE score table for RNA (
rna-estimate-scores.gct
), CNA (cna-estimate-scores.gct
) and proteome (*-estimate-scores.gct
) - Plots showing correlation heatmaps, co-clustering fanplot and boxplots for ESTIMATE scores (
sample-qc-plots.pdf
)
- ESTIMATE score table for RNA (
- Mertins, P., Mani, D., Ruggles, K., Gillette, M., Clauser, K., Wang, P., Wang, X., Qiao, J., Cao, S., Petralia, F., et al. (2016). Proteogenomics connects somatic mutations to signalling in breast cancer. Nature 534(7605), 55 - 62. https://dx.doi.org/10.1038/nature18003.
- Yoshihara, K., Shahmoradgoli, M., nez, E., Vegesna, R., Kim, H., Torres-Garcia, W., o, V., Shen, H., Laird, P., Levine, D., Carter, S., Getz, G., Stemke-Hale, K., Mills, G., Verhaak, R. (2013). Inferring tumour purity and stromal and immune cell admixture from expression data. Nature Communications 4(), 1 - 11. https://dx.doi.org/10.1038/ncomms3612.
- Home
- PANOPLY Tutorial
- Data Preparation Modules
-
Data Analysis Modules
- panoply_association
- panoply_blacksheep
- panoply_clumps_ptm_diffexp
- panoply_clumps_ptm
- panoply_clumps_ptm_postprocess
- panoply_cmap_analysis
- panoply_cna_correlation
- panoply_cons_clust
- panoply_immune_analysis
- panoply_metaboanalyst
- panoply_mimp
- panoply_nmf
- panoply_nmf_postprocess
- panoply_omicsev
- panoply_quilts
- panoply_rna_protein_correlation
- panoply_sankey
- panoply_ssgsea
-
Report Modules
- panoply_association_report
- panoply_blacksheep_report
- panoply_clumps_ptm_report
- panoply_cna_correlation_report
- panoply_cons_clust_report
- panoply_immune_analysis_report
- panoply_metaboanalyst_report
- panoply_mimp_report
- panoply_nmf_report
- panoply_normalize_ms_data_report
- panoply_rna_protein_correlation_report
- panoply_sampleqc_report
- panoply_sankey_report
- panoply_ssgsea_report
- Support Modules
- Navigating Results
- PANOPLY without Terra
- Customizing PANOPLY
-
Workflows
- panoply_association_workflow
- panoply_blacksheep_workflow
- panoply_clumps_ptm_workflow
- panoply_immune_analysis_workflow
- panoply_metaboanalyst_workflow
- panoply_nmf_workflow
- panoply_nmf_internal_workflow
- panoply_normalize_filter_workflow
- panoply_process_SM_table
- panoply_sankey_workflow
- panoply_ssgsea_workflow
- Pipelines