-
Notifications
You must be signed in to change notification settings - Fork 16
Data Analysis Modules: panoply_ssgsea
Performs single sample Gene Set Enrichment Analysis (ssGSEA) or PTM-Signature Enrichment Analysis (PTM-SEA) [1] on each column of the input data matrix. This module is based on the implementation available at the ssGSEA2.0 GitHub repository.
This is an updated version of the original ssGSEA [2,3] R-implementation. Depending on the input dataset and chosen database (gene sets or PTM signatures), the software performs either ssGSEA or PTM-SEA, respectively. The Molecular Signatures Database (MSigDB) [4] provides a large collection of curated gene sets. Gene sets are stored as plain text in GMT format. A current version of MSigDB gene set collections can be found in the db/msigdb
subfolder. MSigDB gene sets are realeased under Creative Commons Attribution 4.0 International License. The license terms can be found in thedb/msigdb
folder.
File formats supported by ssGSEA2.0/PTM-SEA are Gene Cluster Text GCT v1.2 or GCT v1.3 files. Morpheus provides a convenient way to convert your data tables into GCT format.
For more information about the GSEA method and MSigDB please visit http://software.broadinstitute.org/gsea/.
-
input_ds
: (.gct
file) input GCT file -
gene_set_database
: (.gmt
file) gene set database -
yaml_file
: (.yaml
file) master-parameters.yaml
-
correl_type
: (String) Correlation type: "z.score" (default), "rank", "symm.rank". -
global_fdr
: (Boolean) If TRUE global FDR across all data columns is calculated (default: FALSE). -
min_overlap
: (Integer) Minimal overlap between signature and data set (default: 10). -
tolerate_min_overlap_err
(String) Internal parameter. TRUE/FALSE toggle for tolerating "not-enough-overlap" errors. Recommended value is FALSE. -
nperm
: (Integer) Number of permutations (default: 1000). -
output_score_type
: (String) Score type: "ES" - enrichment score, "NES" - normalized ES (default). -
sample_norm_type
: (String) Sample normalization: "rank"(default), "log", "log.rank" -
statistic
: (String) Test statistic: "area.under.RES" (default), "Kolmogorov-Smirnov" -
weight
: (Float) When weight=0, all genes have the same weight; if weight>0 actual values matter and can change the resulting score (default: 0.75). -
output_prefix
: (String, default="results-ssgsea") File prefix for output files.
-
results
: (.tar.gz
file) tarball including:-
${output_prefix}-scores.gct
: GCT file with enrichment scores as data matrix (@mat) -
${output_prefix}-pvalues.gct
: GCT file with nominal p-values as data matrix (@mat) -
${output_prefix}-fdr-pvalues.gct
: GCT file with FDR-corrected p-values as data matrix (@mat) -
${output_prefix}-combined.gct
: GCT file with enrichment scores as data matrix (@mat) as well as nominal and FDR-corrected p-values as row-description metadata (@rdesc). -
${output_prefix}-parameters.txt
: Text file summarizing parameters. -
${output_prefix}-ssgse.log.txt
: Text file tracking progess. -
signature_gct
: Directory with individual GCT files (one for each gene set) with the original data used as input for ssGSEA/PTM-SEA as data matrix (@mat).
-
-
ssgsea_min_overlap_err
: (Boolean) Internal parameter. TRUE if all pathways returned a "not-enough-overlap" error; relevant whentolerate_min_overlap_err=TRUE
. Can be used to automatically skip the report module in a workflow context.
-
Krug, K., Mertins, P., Zhang, B., Hornbeck, P., Raju, R., Ahmad, R., . Szucs, M., Mundt, F., Forestier, D., Jane-Valbuena, J., Keshishian, H., Gillette, M. A., Tamayo, P., Mesirov, J. P., Jaffe, J. D., Carr, S. A., Mani, D. R. (2019). A curated resource for phosphosite-specific signature analysis, Molecular & Cellular Proteomics (in Press). http://doi.org/10.1074/mcp.TIR118.000943
-
Barbie, D. A., Tamayo, P., Boehm, J. S., Kim, S. Y., Susan, E., Dunn, I. F., . Hahn, W. C. (2010). Systematic RNA interference reveals that oncogenic KRAS- driven cancers require TBK1, Nature, 462(7269), 108-112. https://doi.org/10.1038/nature08460
-
Abazeed, M. E., Adams, D. J., Hurov, K. E., Tamayo, P., Creighton, C. J., Sonkin, D., et al. (2013). Integrative Radiogenomic Profiling of Squamous Cell Lung Cancer. Cancer Research, 73(20), 6289-6298. http://doi.org/10.1158/0008-5472.CAN-13-1616
-
Subramanian, A., Tamayo, P., Mootha, V. K., Mukherjee, S., Ebert, B. L., Gillette, M. A., et al. (2005). Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proceedings of the National Academy of Sciences of the United States of America, 102(43), 15545-15550. http://doi.org/10.1073/pnas.0506580102
- Home
- PANOPLY Tutorial
- Data Preparation Modules
-
Data Analysis Modules
- panoply_association
- panoply_blacksheep
- panoply_clumps_ptm_diffexp
- panoply_clumps_ptm
- panoply_clumps_ptm_postprocess
- panoply_cmap_analysis
- panoply_cna_correlation
- panoply_cons_clust
- panoply_immune_analysis
- panoply_metaboanalyst
- panoply_mimp
- panoply_nmf
- panoply_nmf_postprocess
- panoply_omicsev
- panoply_quilts
- panoply_rna_protein_correlation
- panoply_sankey
- panoply_ssgsea
-
Report Modules
- panoply_association_report
- panoply_blacksheep_report
- panoply_clumps_ptm_report
- panoply_cna_correlation_report
- panoply_cons_clust_report
- panoply_immune_analysis_report
- panoply_metaboanalyst_report
- panoply_mimp_report
- panoply_nmf_report
- panoply_normalize_ms_data_report
- panoply_rna_protein_correlation_report
- panoply_sampleqc_report
- panoply_sankey_report
- panoply_ssgsea_report
- Support Modules
- Navigating Results
- PANOPLY without Terra
- Customizing PANOPLY
-
Workflows
- panoply_association_workflow
- panoply_blacksheep_workflow
- panoply_clumps_ptm_workflow
- panoply_immune_analysis_workflow
- panoply_metaboanalyst_workflow
- panoply_nmf_workflow
- panoply_nmf_internal_workflow
- panoply_normalize_filter_workflow
- panoply_process_SM_table
- panoply_sankey_workflow
- panoply_ssgsea_workflow
- Pipelines